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“T'he Law of Decreasing Credibility: The credibility of inference decreases
with the strength of the assumptions maintained” (Manski, 2003).

Assume unconfoundedness. Then,
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Identify a point o

Make weaker assumptions:

Identify an interval | l

“Partial identification” or “set identification”
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Potential outcomes bounded between 0 (a) and 1 (b)
=03 EY|T=1=.9 EY|T=0=.2

Plugging these in to the no-assumptions bound:
E[Y (1) = Y(0)] < (:3)(.9) + (1 =.3)(1) = (:3)(0) = (1 = .3)(-2)

E[Y (1) = Y(0)] = (:3)(.9) + (1 = .3)(0) — (:3)(1) — (1 = .3)(-2)
—0.17 < E[Y(1) — Y(0)] < 0.83



(Questions:

1.

What kind of bounds can we get on the ATE if the
potential outcomes are unbounded?

Assuming bounded potential outcomes, how much
smaller of an interval can we get than the trivial interval
[a—b,b—a]?

Re-derive the Observational-Counterfactual
Decomposition.

Derive a more general no-assumptions bound where
a1 S Y(l) S bl and ao S Y(O) S bo .
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E[Y (1) - Y(0)] <0

Running example

No-assumptions bound: —0.17 <E[Y (1) — Y (0)] < 0.83

Combining nonpositive MTR upper bound with no-assumptions lower bound:

—0.17 <E[Y(1) - Y(0)] <0



(Question:
Given, the nonpositive MTR assumption,

prove E[Y (1) — Y (0)] < 0.
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E[Y(1) | T =1] > E[Y(1) | T=0], E[}(0)|T=1]>E[Y(0)]|T=0]

Under the MTS assumption, the ATE is bounded from above by
the associational difference. Mathematically,

E[Y(1) -~ Y(0)] <E[Y |T=1]—E[Y | T = 0]

Question: Prove the above M'TS upper bound.
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Running Example: MTS and MTR

Potential outcomes bounded between 0 (2) and 1 (b)
m=0.3 EY | T=1=.9 EY |T=0]=.2

No-assumptions bound: —0.17 < E[Y (1) — Y (0)] < 0.83
MTS upper bound: E[Y (1) -Y(0)] <E[Y |T=1]-E[Y | T = 0]

Combining MTS upper bound with no-assumptions lower bound:
~0.17 <E[Y(1) — Y(0)] < 0.7
Adding nonnegative MTR assumption and combining M'TS upper bound
with MTR lower bound (E[Y (1) — Y (0)] > 0):
0 <E[Y(1) - Y(0)] <0.7
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EY(1) -Y(0)]=7EY [T=1]+ 1 -m)E[Y(1) |T=0]  (Observational-Counterfactual
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=7E[Y |T=1]—-7a
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EY(1) -Y©0)=7EY | T=14+1—-m)E[Y(1) | T =0]  (Observational-Counterfactual
—7E[Y(0) | T=1-1—-mE[Y|T =0 Decomposition)
>nEY | T=14+(1—-7m)a
_rE[Y |T=1 -1 -x)E[Y |T = 0]
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OTS Complete Bound 1 and Running Example

EY(1)-Y(0)] <7E[Y | T=1]—7ma
E[Y(1) —Y(0)]>1-7)a—(1—m)E[Y | T = 0]
Interval Length = 7E]Y | T =1+ (1—mE[Y | T =0] —a

Running example

Potential outcomes bounded between 0 (2) and 1 (b)
7 =0.3 EY |[T=1=.9 E[Y |T=0]=.2

No-assumptions bound: —0.17 < E[Y (1) — Y (0)] < 0.83

OTS Bound 1: —0.14 < E[Y (1) — Y (0)] < 0.27
Interval Length = 0.41



Bound that identifies the sign
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OTS Bound 1 implication we used: E[Y (1) |T =0] <E[Y | T = 0]
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Proof: E[Y (1) |T = 0]
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OTS Upper Bound 2 Preliminaries

OTS Assumption: T; =1 = Y;(1) > Y;(0), T; =0 = Y;(0) > Y;(1)
Contrapositive: T; =1 <= Y;(0) < Y;(1)
OTS Bound 1 implication we used: E[Y (1) |T =0] <E[Y | T = 0]
OTS Bound 2 implication we’ll use: E[Y (1) | T =0] <E[Y | T = 1]
Proof: E[Y(1)|T =0 =E[Y(1)|Y(0) > Y(1)]
<E[Y(1) | Y(0) < V(1)
=E[Y(1)| T = 1]




OTS Upper Bound 2 Preliminaries

OTS Assumption: T; =1 = Y;(1) > Y;(0), T; =0 = Y;(0) > Y;(1)
Contrapositive: T; =1 <= Y;(0) < Y;(1)
OTS Bound 1 implication we used: E[Y (1) |T =0] <E[Y | T = 0]
OTS Bound 2 implication we’ll use: E[Y (1) | T =0] <E[Y | T = 1]
Proof: E[Y(1)|T =0 =E[Y(1)|Y(0) > Y(1)]
<E[Y(1)|Y(0) <Y(1)]
—E[Y(1) | T =1]
T =1]

— Y ‘




OTS Upper Bound 2

OTS assumption tells us that E[Y (1) | T =0] <E[Y | T = 1]
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OTS Upper Bound 2

OTS assumption tells us that E[Y (1) | T =0] <E[Y | T = 1]

E[Y(l) — Y(O)] — WE[Y | 1T = 1] T (1 - 77) E[Y(l) | 1 = O] (Observational-Counterfactual
—7EY(0) | T=1~-1-mE[Y|T =0 Decomposition)
<mE[Y |T=1+(1-m)E[Y |T =1]
—7ma— (1—m)E[Y | T =0]



OTS Upper Bound 2

OTS assumption tells us that E[Y (1) | T =0] <E[Y | T = 1]

EY(1)-Y(0)]=7E}Y |T=14+ 1 -m)E[Y(1) [T =0]  (Obscrvational-Counterfactual
~7E[Y(©0) | T=1-1-m)E[Y |T =0] Decomposition)
<7TEY |T=1+10-m)E[Y |T =1]
—ma— (1—mE[Y |T = 0]
=E[Y |T=1-na—(1-mE[Y |T =0



(Question:
Prove a new lower bound using the version

ot the OTS assumption that we used in the
last slide.
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OTS Complete Bound 2 and Running Example

E[Y(1)— Y(0)] <E[Y |T=1]—ra—(1—mE}Y | T =0]
E[Y(1)—Y(0)]>nE[Y |T=1+1-n)a—E[Y |T =0

Interval Length = (1 —n)E[Y | T =1]+7E[Y | T =0] —a

Running example

Potential outcomes bounded between 0 (2) and 1 (b)
7 =0.3 EY |[T=1=.9 E[Y |T=0]=.2

No-assumptions bound: —0.17 < E[Y (1) — Y (0)] < 0.83

OTS Bound 2:  0.07 < E[Y(l) — Y(O)] < 0.76 Identified the sign
Interval Length = 0.69 of the effect!
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7 =0.3 E[Y |[T=1=.9 E[Y |T=0]=.2
No-assumptions bound: —0.17 < E[Y (1) — Y (0)] < 0.83
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Interval Length = 0.41

OTS Bound 2:  0.07 <E[Y (1) - Y (0)] <0.76  Identified the sign of the effect,
Interval Length = 0.69 but gives a 68% larger interval



Comparing and Mixing OTS Bounds

Potential outcomes bounded between 0 (2) and 1 (b)
7 =0.3 E[Y |[T=1=.9 E[Y |T=0]=.2
No-assumptions bound: —0.17 < E[Y (1) — Y (0)] < 0.83

OTS Bound 1: —0.14 < E[Y (1) — Y (0)] <0.27
Interval Length = 0.41

OTS Bound 2:  0.07 <E[Y (1) - Y (0)] <0.76  Identified the sign of the effect,
Interval Length = 0.69 but gives a 68% larger interval

OTS Upper Bound 1 and OTS Lower Bound 2:
0.07 <E[Y(1) —Y(0)] <0.27  Interval Length = 0.2
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Bias in Simple Linear Setting

T := a,W + o, U
Y :=38,W+ B,U + 0T

Proof coming
after next slide

EY(1)-Y(0)]=Ewy [EY |T=1,W, U] —E[Y | T =0,W,U]] =6

Ew [EY | T =1,W] ~E[Y | T = 0,W]] =4+ 2%

Oy,

Bias of By [E[Y | T = 1, W] —E[Y | T =0, W] = 6+ 2 — 5= Pe
Oty Oty
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T :=a,W + a,U

Assumed SCM:
Y = 38.,W + B8, U+ 6T
Result:
The confounding bias of adjusting for just W (and not U) is Pu. Formally,
oy

Ew [E[Y |T=1W]—E[Y | T =0, W]

~Ewy [ElY | T =1W,U] ~E[Y |T = 0,W,U] = 2
Proof Outline: ’
1.  Get a closed-form expression for Ew [E[Y | T = ¢, W]] in terms of v, @y, Bu, and fu.
2. Use step 1 to get a closed-form expression for the difference

Ew [E[Y |T=1W]—E[Y | T =0, W]]

3. Subtractoff Ewy [E[Y |T =1, W, U] -E[Y |T=0,W,U]] =¢
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T := o, W+ a,U U_T—osz
Y = 5wW —|— BuU—F 5T Oy,

Assumed SCM:

Ew [ElY | T =t, W] =Ew [E|B,W + 8, U + 6T | T =t, W]
= Ew [BwW + BUE[U | T =t, W] + 5t]

— By _BwW+6u (t — &wW> +5t]

Ay,
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Bias = By [E[Y | T = 1,W]| —E[Y | T = 0, W]|
_EW,U[E[Y|T:17W7U]_E[Y|T:()7VV7U]]
SY R

Ay,
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T = a W + a,U
Y :=38,W + B, U + 0T
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Generalization to Arbitrary Linear SCMs

We’ve considered specifically the ATE in this simple graph
E[Y (1) - Y(0)]

See “Sensitivity Analysis of Iinear Structural Causal Models” from Cinelli
et al. (2019) for arbitrary estimands in arbitrary graphs, where the

structural equations are still linear


http://proceedings.mlr.press/v97/cinelli19a.html

T = o, W + o, U

SCM:
Y =38, ,W + B, U + 0T

(Questions:

1. Given the above SCM, show that
ﬂW,U [“:[Y ‘ T = 1,W,U] — ":[Y | T = O,W,UH — 0

2. Does what we have shown in this section work 1f W 1s a

vector?
3. How about if U is a vector?



Bounds

No-Assumptions Bound
Monotone Treatment Response
Monotone Treatment Selection

Optimal Treatment Selection

Sensitivity Analysis
Linear Single Confounder

Towards More General Settings
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Binary Treatment

T := a,W + a,U

P(T=1|W,U) := sigmoid (a,, W + a,,U)
Y := B, ,W + B, U + 0T

Y =0, ,W+ 6, U+ 0T+ N

1
where sigmoid(z) = T
e xT

Rosenbaum & Rubin (1983) and Imbens (2003)

* Simple parametric form for T

* Simple parametric form for Y
* U is binary

* U is a scalar (only one unobserved confounder)
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Binary Treatment

T := a,W + a,U

P(T=1|W,U) := sigmoid (a,, W + a,,U)
Y := B, ,W + B, U + 0T

Y =0, ,W+ 6, U+ 0T+ N

1
where sigmoid(z) = T
e xT

Rosenbaum & Rubin (1983) and Imbens (2003)

S * Sunple-parametrieform—forTt
Cinelli & Hazlett (2020) drop . |
many of these assumptions * Simple parametric form for Y
. Lliah:

* s asealarfonlreoneunchbserved-eonteundes


https://rss.onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1983.tb01242.x
https://scholar.harvard.edu/files/imbens/files/sensitivity_to_exogeneity_assumptions_in_program_evaluation.pdf
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Sense and Sensitivity Analysis Veitch & Zaveri (2020)

Gives the same nice sensitivity curves we’ve been seeing, but with more
flexible parameterization

Both the treatment mechanism and the outcome mechanism can be
modeled with arbitrary machine learning models, and we still get a
closed-form expression for the bias (assuming well-specification)



https://arxiv.org/abs/2003.01747

Lots of Other Sensitivity Analysis Methods

* An Introduction to Sensitivity Analysis for Unobserved Confounding in
Non-Experimental Prevention Research (Liu, Kuramoto, & Stuart., 2013)

* Rosenbaum has several (Rosenbaum 2002, 2010, 2017)

* Unmeasured Confounding for General Outcomes, Treatments, and

Confounders (VanderWeele & Arah, 2011)
* Sensitivity Analysis Without Assumptions (Ding & VanderWeele, 2018)

* Flexible sensitivity analysis for observational studies without observable
implications (Franks D'Amour. & Feller. 2019)

* Bounds on the conditional and average treatment effect with unobserved
confounding factors (Yadlowsky et al., 2018)



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3800481/
https://www.springer.com/gp/book/9780387989679
https://www.springer.com/la/book/9781461424864
https://www.springer.com/gp/book/9783030464042
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073860/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4820664/
https://arxiv.org/abs/1809.00399
https://arxiv.org/abs/1808.09521

