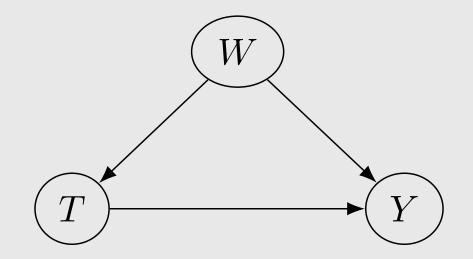
Unobserved Confounding, Bounds, and Sensitivity Analysis

Brady Neal

causalcourse.com

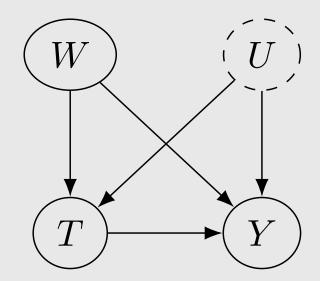
Motivation: Unobserved Confounding



$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_{W} \left[\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W] \right]$$

Brady Neal 2 / 48

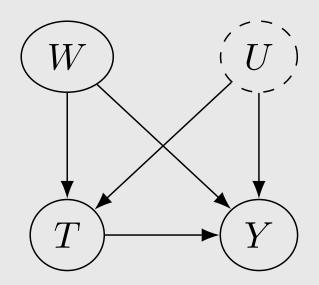
Motivation: Unobserved Confounding



$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_{W,U} \left[\mathbb{E}[Y \mid T = 1, W, U] - \mathbb{E}[Y \mid T = 0, W, U] \right]$$

Brady Neal 2 / 48

Motivation: Unobserved Confounding



$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_{W,U} \left[\mathbb{E}[Y \mid T = 1, W, U] - \mathbb{E}[Y \mid T = 0, W, U] \right]$$

$$\stackrel{?}{\approx} \mathbb{E}_{W} \left[\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W] \right]$$

Brady Neal 2 / 48

Bounds

No-Assumptions Bound

Monotone Treatment Response

Monotone Treatment Selection

Optimal Treatment Selection

Sensitivity Analysis

Linear Single Confounder

Towards More General Settings

3 / 48

Bounds

No-Assumptions Bound

Monotone Treatment Response

Monotone Treatment Selection

Optimal Treatment Selection

Sensitivity Analysis

Linear Single Confounder

Towards More General Settings

"The Law of Decreasing Credibility: The credibility of inference decreases with the strength of the assumptions maintained" (Manski, 2003).

"The Law of Decreasing Credibility: The credibility of inference decreases with the strength of the assumptions maintained" (Manski, 2003).

Assume unconfoundedness. Then,

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_W [\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W]]$$

"The Law of Decreasing Credibility: The credibility of inference decreases with the strength of the assumptions maintained" (Manski, 2003).

Assume unconfoundedness. Then,

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_W \left[\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W] \right]$$
 Identify a point

"The Law of Decreasing Credibility: The credibility of inference decreases with the strength of the assumptions maintained" (Manski, 2003).

Assume unconfoundedness. Then,

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_W \left[\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W] \right]$$
 Identify a point

Make weaker assumptions:

"The Law of Decreasing Credibility: The credibility of inference decreases with the strength of the assumptions maintained" (Manski, 2003).

Assume unconfoundedness. Then,

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_W \left[\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W] \right]$$
 Identify a point

Make weaker assumptions:

Identify an interval

"The Law of Decreasing Credibility: The credibility of inference decreases with the strength of the assumptions maintained" (Manski, 2003).

Assume unconfoundedness. Then,

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_W \left[\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W] \right]$$
 Identify a point

Make weaker assumptions:

Identify an interval

"Partial identification" or "set identification"

Bounds

No-Assumptions Bound

Monotone Treatment Response

Monotone Treatment Selection

Optimal Treatment Selection

Sensitivity Analysis

Linear Single Confounder

Towards More General Settings

Example: Y(0) and Y(1) are between 0 and 1

Example: Y(0) and Y(1) are between 0 and 1

$$Y_i(1) - Y_i(0) \le 1$$
 Max: 1 - 0

Example: Y(0) and Y(1) are between 0 and 1

Min: 0 - 1 $-1 \le Y_i(1) - Y_i(0) \le 1$ Max: 1 - 0

Example: Y(0) and Y(1) are between 0 and 1

Min: 0 - 1
$$-1 \le Y_i(1) - Y_i(0) \le 1$$
 Max: 1 - 0 $-1 \le \mathbb{E}[Y(1) - Y(0)] \le 1$

Example: Y(0) and Y(1) are between 0 and 1

Min: 0 - 1
$$-1 \le Y_i(1) - Y_i(0) \le 1$$
 Max: 1 - 0 $-1 \le \mathbb{E}[Y(1) - Y(0)] \le 1$ Trivial length limit: 2

Example: Y(0) and Y(1) are between 0 and 1

Min: 0 - 1
$$-1 \le Y_i(1) - Y_i(0) \le 1$$
 Max: 1 - 0 $-1 \le \mathbb{E}[Y(1) - Y(0)] \le 1$

Spoiler: We can cut this in half Trivial length limit: 2

Example: Y(0) and Y(1) are between 0 and 1

Min: 0 - 1
$$-1 \le Y_i(1) - Y_i(0) \le 1$$
 Max: 1 - 0 $-1 \le \mathbb{E}[Y(1) - Y(0)] \le 1$

Spoiler: We can cut this in half Trivial length limit: 2

Example: Y(0) and Y(1) are between 0 and 1

Min: 0 - 1
$$-1 \le Y_i(1) - Y_i(0) \le 1$$
 Max: 1 - 0 $-1 \le \mathbb{E}[Y(1) - Y(0)] \le 1$

Spoiler: We can cut this in half Trivial length limit: 2

$$a - b \le Y_i(1) - Y_i(0) \le b - a$$

Example: Y(0) and Y(1) are between 0 and 1

Min: 0 - 1
$$-1 \le Y_i(1) - Y_i(0) \le 1$$
 Max: 1 - 0 $-1 \le \mathbb{E}[Y(1) - Y(0)] \le 1$

Spoiler: We can cut this in half Trivial length limit: 2

$$a - b \le Y_i(1) - Y_i(0) \le b - a$$

 $a - b \le \mathbb{E}[Y(1) - Y(0)] \le b - a$

Example: Y(0) and Y(1) are between 0 and 1

Min: 0 - 1
$$-1 \le Y_i(1) - Y_i(0) \le 1$$
 Max: 1 - 0 $-1 \le \mathbb{E}[Y(1) - Y(0)] \le 1$

Spoiler: We can cut this in half Trivial length limit: 2

$$a - b \le Y_i(1) - Y_i(0) \le b - a$$

$$a - b \le \mathbb{E}[Y(1) - Y(0)] \le b - a$$
Trivial length limit: $2(b - a)$

Example: Y(0) and Y(1) are between 0 and 1

Min: 0 - 1
$$-1 \le Y_i(1) - Y_i(0) \le 1$$
 Max: 1 - 0 $-1 \le \mathbb{E}[Y(1) - Y(0)] \le 1$

Spoiler: We can cut this in half Trivial length limit: 2

More generally, potential outcomes are bounded: $\forall t, a \leq Y(t) \leq b$

$$a - b \le Y_i(1) - Y_i(0) \le b - a$$

 $a - b \le \mathbb{E}[Y(1) - Y(0)] \le b - a$

Spoiler: We can cut this in half Trivial length limit: 2(b-a)

$$\mathbb{E}[Y(1) - Y(0)]$$

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$$

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$$

$$= P(T = 1) \mathbb{E}[Y(1) \mid T = 1] + P(T = 0) \mathbb{E}[Y(1) \mid T = 0]$$

$$- P(T = 1) \mathbb{E}[Y(0) \mid T = 1] - P(T = 0) \mathbb{E}[Y(0) \mid T = 0]$$

$$\begin{split} \mathbb{E}[Y(1) - Y(0)] &= \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] \\ &= P(T=1) \, \mathbb{E}[Y(1) \mid T=1] + P(T=0) \, \mathbb{E}[Y(1) \mid T=0] \\ &- P(T=1) \, \mathbb{E}[Y(0) \mid T=1] - P(T=0) \, \mathbb{E}[Y(0) \mid T=0] \\ &= P(T=1) \, \mathbb{E}[Y \mid T=1] + P(T=0) \, \mathbb{E}[Y(1) \mid T=0] \\ &- P(T=1) \, \mathbb{E}[Y(0) \mid T=1] - P(T=0) \, \mathbb{E}[Y \mid T=0] \end{split}$$

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$$

$$= P(T = 1) \, \mathbb{E}[Y(1) \mid T = 1] + P(T = 0) \, \mathbb{E}[Y(1) \mid T = 0]$$

$$- P(T = 1) \, \mathbb{E}[Y(0) \mid T = 1] - P(T = 0) \, \mathbb{E}[Y(0) \mid T = 0]$$

$$= P(T = 1) \, \mathbb{E}[Y \mid T = 1] + P(T = 0) \, \mathbb{E}[Y(1) \mid T = 0]$$

$$- P(T = 1) \, \mathbb{E}[Y(0) \mid T = 1] - P(T = 0) \, \mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$$

$$= P(T = 1) \mathbb{E}[Y(1) \mid T = 1] + P(T = 0) \mathbb{E}[Y(1) \mid T = 0]$$

$$- P(T = 1) \mathbb{E}[Y(0) \mid T = 1] - P(T = 0) \mathbb{E}[Y(0) \mid T = 0]$$

$$= P(T = 1) \mathbb{E}[Y \mid T = 1] + P(T = 0) \mathbb{E}[Y(1) \mid T = 0]$$

$$- P(T = 1) \mathbb{E}[Y(0) \mid T = 1] - P(T = 0) \mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$$

$$= P(T = 1) \mathbb{E}[Y(1) \mid T = 1] + P(T = 0) \mathbb{E}[Y(1) \mid T = 0]$$

$$- P(T = 1) \mathbb{E}[Y(0) \mid T = 1] - P(T = 0) \mathbb{E}[Y(0) \mid T = 0]$$
Observational
$$= P(T = 1) \mathbb{E}[Y \mid T = 1] + P(T = 0) \mathbb{E}[Y(1) \mid T = 0]$$

$$- P(T = 1) \mathbb{E}[Y(0) \mid T = 1] - P(T = 0) \mathbb{E}[Y \mid T = 0]$$

$$\begin{split} \mathbb{E}[Y(1) - Y(0)] &= \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] \\ &= P(T=1) \, \mathbb{E}[Y(1) \mid T=1] + P(T=0) \, \mathbb{E}[Y(1) \mid T=0] \\ &- P(T=1) \, \mathbb{E}[Y(0) \mid T=1] - P(T=0) \, \mathbb{E}[Y(0) \mid T=0] \\ \text{Observational} &= P(T=1) \, \mathbb{E}[Y \mid T=1] + P(T=0) \, \mathbb{E}[Y(1) \mid T=0] \\ \text{Counterfactual} &- P(T=1) \, \mathbb{E}[Y(0) \mid T=1] - P(T=0) \, \mathbb{E}[Y \mid T=0] \end{split}$$

$$\mathbb{E}[Y(1) - Y(0)] = \pi \mathbb{E}[Y \mid T = 1] + (1 - \pi) \mathbb{E}[Y(1) \mid T = 0]$$

$$-\pi \mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \mathbb{E}[Y \mid T = 0]$$
 where $\pi \triangleq P(T = 1)$

$$\begin{split} \mathbb{E}[Y(1) - Y(0)] &= \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] \\ &= P(T=1) \, \mathbb{E}[Y(1) \mid T=1] + P(T=0) \, \mathbb{E}[Y(1) \mid T=0] \\ &- P(T=1) \, \mathbb{E}[Y(0) \mid T=1] - P(T=0) \, \mathbb{E}[Y(0) \mid T=0] \\ \text{Observational} &= P(T=1) \, \mathbb{E}[Y \mid T=1] + P(T=0) \, \mathbb{E}[Y(1) \mid T=0] \\ \text{Counterfactual} &- P(T=1) \, \mathbb{E}[Y(0) \mid T=1] - P(T=0) \, \mathbb{E}[Y \mid T=0] \end{split}$$

No-Assumptions Bound

Observational-Counterfactual Decomposition

$$\mathbb{E}[Y(1) - Y(0)] = \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y(1) \mid T = 0]$$
$$- \pi \, \mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$
where $\pi \triangleq P(T = 1)$

Observational-Counterfactual Decomposition

$$\mathbb{E}[Y(1) - Y(0)] = \pi \mathbb{E}[Y \mid T = 1] + (1 - \pi) \mathbb{E}[Y(1) \mid T = 0]$$
$$-\pi \mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \mathbb{E}[Y \mid T = 0]$$
where $\pi \triangleq P(T = 1)$

Observational-Counterfactual Decomposition

$$\mathbb{E}[Y(1) - Y(0)] = \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y(1) \mid T = 0]$$
$$- \pi \, \mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$
where $\pi \triangleq P(T = 1)$

$$\mathbb{E}[Y(1) - Y(0)] \le$$

$$\mathbb{E}[Y(1) - Y(0)] \ge$$

Observational-Counterfactual Decomposition

$$\mathbb{E}[Y(1) - Y(0)] = \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y(1) \mid T = 0]$$
$$- \pi \, \mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$
where $\pi \triangleq P(T = 1)$

$$\mathbb{E}[Y(1) - Y(0)] \le$$

$$\mathbb{E}[Y(1) - Y(0)] \ge$$

Observational-Counterfactual Decomposition

$$\mathbb{E}[Y(1) - Y(0)] = \pi \, \underline{\mathbb{E}[Y \mid T = 1]} + (1 - \pi) \, \mathbb{E}[Y(1) \mid T = 0]$$
$$- \pi \, \mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \, \underline{\mathbb{E}[Y \mid T = 0]}$$
where $\pi \triangleq P(T = 1)$

$$\mathbb{E}[Y(1) - Y(0)] \le \pi \, \mathbb{E}[Y \mid T = 1] \qquad -(1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(1) - Y(0)] \ge \pi \, \mathbb{E}[Y \mid T = 1] \qquad -(1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

Observational-Counterfactual Decomposition

$$\mathbb{E}[Y(1) - Y(0)] = \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \underline{\mathbb{E}[Y(1) \mid T = 0]} \\ - \pi \, \mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$
 where $\pi \triangleq P(T = 1)$

$$\mathbb{E}[Y(1) - Y(0)] \le \pi \, \mathbb{E}[Y \mid T = 1] \qquad -(1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(1) - Y(0)] \ge \pi \, \mathbb{E}[Y \mid T = 1] \qquad -(1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

Observational-Counterfactual Decomposition

$$\mathbb{E}[Y(1) - Y(0)] = \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \underline{\mathbb{E}[Y(1) \mid T = 0]} \\ - \pi \, \mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$
 where $\pi \triangleq P(T = 1)$

$$\mathbb{E}[Y(1) - Y(0)] \le \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, b \qquad - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(1) - Y(0)] \ge \pi \, \mathbb{E}[Y \mid T = 1] \qquad - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

Observational-Counterfactual Decomposition

$$\mathbb{E}[Y(1) - Y(0)] = \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y(1) \mid T = 0]$$

$$- \pi \, \mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$
where $\pi \triangleq P(T = 1)$

$$\mathbb{E}[Y(1) - Y(0)] \le \pi \,\mathbb{E}[Y \mid T = 1] + (1 - \pi) \,b \qquad - (1 - \pi) \,\mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(1) - Y(0)] \ge \pi \,\mathbb{E}[Y \mid T = 1] \qquad - (1 - \pi) \,\mathbb{E}[Y \mid T = 0]$$

Observational-Counterfactual Decomposition

$$\mathbb{E}[Y(1) - Y(0)] = \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y(1) \mid T = 0]$$

$$- \pi \, \mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$
where $\pi \triangleq P(T = 1)$

$$\mathbb{E}[Y(1) - Y(0)] \le \pi \,\mathbb{E}[Y \mid T = 1] + (1 - \pi) \,b - \pi \,a - (1 - \pi) \,\mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(1) - Y(0)] \ge \pi \,\mathbb{E}[Y \mid T = 1] - (1 - \pi) \,\mathbb{E}[Y \mid T = 0]$$

Observational-Counterfactual Decomposition

$$\mathbb{E}[Y(1) - Y(0)] = \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \underline{\mathbb{E}}[Y(1) \mid T = 0]$$
$$- \pi \, \mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$
where $\pi \triangleq P(T = 1)$

$$\mathbb{E}[Y(1) - Y(0)] \le \pi \,\mathbb{E}[Y \mid T = 1] + (1 - \pi) \,b - \pi \,a - (1 - \pi) \,\mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(1) - Y(0)] \ge \pi \,\mathbb{E}[Y \mid T = 1] - (1 - \pi) \,\mathbb{E}[Y \mid T = 0]$$

Observational-Counterfactual Decomposition

$$\mathbb{E}[Y(1) - Y(0)] = \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \underline{\mathbb{E}[Y(1) \mid T = 0]} \\ - \pi \, \mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$
 where $\pi \triangleq P(T = 1)$

$$\mathbb{E}[Y(1) - Y(0)] \le \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, b - \pi \, a - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(1) - Y(0)] \ge \pi \,\mathbb{E}[Y \mid T = 1] + (1 - \pi) \,a \qquad - (1 - \pi) \,\mathbb{E}[Y \mid T = 0]$$

Observational-Counterfactual Decomposition

$$\mathbb{E}[Y(1) - Y(0)] = \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y(1) \mid T = 0]$$

$$- \pi \, \mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$
where $\pi \triangleq P(T = 1)$

$$\mathbb{E}[Y(1) - Y(0)] \le \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, b - \pi \, a - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(1) - Y(0)] \ge \pi \,\mathbb{E}[Y \mid T = 1] + (1 - \pi) \,a \qquad - (1 - \pi) \,\mathbb{E}[Y \mid T = 0]$$

Observational-Counterfactual Decomposition

$$\mathbb{E}[Y(1) - Y(0)] = \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y(1) \mid T = 0]$$

$$- \pi \, \mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$
where $\pi \triangleq P(T = 1)$

$$\mathbb{E}[Y(1) - Y(0)] \le \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, b - \pi \, a - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(1) - Y(0)] \ge \pi \,\mathbb{E}[Y \mid T = 1] + (1 - \pi) \,a - \pi \,b - (1 - \pi) \,\mathbb{E}[Y \mid T = 0]$$

Recall trivial bound: $a - b \le \mathbb{E}[Y(1) - Y(0)] \le b - a$

Trivial length limit: 2(b-a)

Recall trivial bound: $a - b \le \mathbb{E}[Y(1) - Y(0)] \le b - a$ Trivial length limit: 2(b - a)

$$\mathbb{E}[Y(1) - Y(0)] \le \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, b - \pi \, a - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(1) - Y(0)] \ge \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, a - \pi \, b - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

Recall trivial bound:
$$a - b \le \mathbb{E}[Y(1) - Y(0)] \le b - a$$

Trivial length limit: $2(b - a)$

No-Assumptions Bound

$$\mathbb{E}[Y(1) - Y(0)] \le \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, b - \pi \, a - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(1) - Y(0)] \ge \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, a - \pi \, b - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

No-assumptions interval length: $(1 - \pi) b + \pi b - \pi a - (1 - \pi) a$

Recall trivial bound: $a - b \le \mathbb{E}[Y(1) - Y(0)] \le b - a$ Trivial length limit: 2(b - a)

No-Assumptions Bound

$$\mathbb{E}[Y(1) - Y(0)] \le \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, b - \pi \, a - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(1) - Y(0)] \ge \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, a - \pi \, b - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

No-assumptions interval length: $(1 - \pi)b + \pi b - \pi a - (1 - \pi)a = b - a$

Recall trivial bound: $a - b \le \mathbb{E}[Y(1) - Y(0)] \le b - a$ Trivial length limit: 2(b - a)

No-Assumptions Bound

$$\mathbb{E}[Y(1) - Y(0)] \le \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, b - \pi \, a - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(1) - Y(0)] \ge \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, a - \pi \, b - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

No-assumptions interval length: $(1 - \pi)b + \pi b - \pi a - (1 - \pi)a = \underline{b - a}$

Potential outcomes bounded between 0 (a) and 1 (b)

Potential outcomes bounded between 0 (a) and 1 (b)

$$\pi = 0.3$$

$$\mathbb{E}[Y \mid T = 1] = .9$$

$$\pi = 0.3$$
 $\mathbb{E}[Y \mid T = 1] = .9$ $\mathbb{E}[Y \mid T = 0] = .2$

Potential outcomes bounded between 0 (a) and 1 (b)

$$\pi = 0.3$$

$$\mathbb{E}[Y \mid T = 1] = .9$$

$$\pi = 0.3$$
 $\mathbb{E}[Y \mid T = 1] = .9$ $\mathbb{E}[Y \mid T = 0] = .2$

$$\mathbb{E}[Y(1) - Y(0)] \le \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, b - \pi \, a - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(1) - Y(0)] \ge \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, a - \pi \, b - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

Potential outcomes bounded between 0 (a) and 1 (b)

$$\pi = 0.3$$
 $\mathbb{E}[Y \mid T = 1] = .9$ $\mathbb{E}[Y \mid T = 0] = .2$

No-Assumptions Bound

$$\mathbb{E}[Y(1) - Y(0)] \le \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, b - \pi \, a - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(1) - Y(0)] \ge \pi \,\mathbb{E}[Y \mid T = 1] + (1 - \pi) \,a - \pi \,b - (1 - \pi) \,\mathbb{E}[Y \mid T = 0]$$

Plugging these in to the no-assumptions bound:

$$\mathbb{E}[Y(1) - Y(0)] \le (.3)(.9) + (1 - .3)(1) - (.3)(0) - (1 - .3)(.2)$$

$$\mathbb{E}[Y(1) - Y(0)] \ge (.3)(.9) + (1 - .3)(0) - (.3)(1) - (1 - .3)(.2)$$

Potential outcomes bounded between 0 (a) and 1 (b)

$$\pi = 0.3$$
 $\mathbb{E}[Y \mid T = 1] = .9$ $\mathbb{E}[Y \mid T = 0] = .2$

No-Assumptions Bound

$$\mathbb{E}[Y(1) - Y(0)] \le \pi \,\mathbb{E}[Y \mid T = 1] + (1 - \pi) \,b - \pi \,a - (1 - \pi) \,\mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(1) - Y(0)] \ge \pi \,\mathbb{E}[Y \mid T = 1] + (1 - \pi) \,a - \pi \,b - (1 - \pi) \,\mathbb{E}[Y \mid T = 0]$$

Plugging these in to the no-assumptions bound:

$$\mathbb{E}[Y(1) - Y(0)] \le (.3)(.9) + (1 - .3)(1) - (.3)(0) - (1 - .3)(.2)$$

$$\mathbb{E}[Y(1) - Y(0)] \ge (.3)(.9) + (1 - .3)(0) - (.3)(1) - (1 - .3)(.2)$$

$$-0.17 \le \mathbb{E}[Y(1) - Y(0)] \le 0.83$$

Questions:

- 1. What kind of bounds can we get on the ATE if the potential outcomes are unbounded?
- 2. Assuming bounded potential outcomes, how much smaller of an interval can we get than the trivial interval [a b, b a]?
- 3. Re-derive the Observational-Counterfactual Decomposition.
- 4. Derive a more general no-assumptions bound where $a_1 \le Y(1) \le b_1$ and $a_0 \le Y(0) \le b_0$.

Bounds

No-Assumptions Bound

Monotone Treatment Response

Monotone Treatment Selection

Optimal Treatment Selection

Sensitivity Analysis

Linear Single Confounder

Towards More General Settings

Assume treatment always helps. Mathematically, $\forall i \ Y_i(1) \geq Y_i(0)$

Assume treatment always helps. Mathematically, $\forall i \ Y_i(1) \geq Y_i(0)$

Means every ITE is nonnegative, so ITE lower bound comes up from a – b to 0

Assume treatment always helps. Mathematically, $\forall i \ Y_i(1) \geq Y_i(0)$

Means every ITE is nonnegative, so ITE lower bound comes up from a – b to 0 Intuitively, the ATE lower bound should raise up to 0 too

$$\mathbb{E}[Y(1) - Y(0)] \ge 0$$

Assume treatment always helps. Mathematically, $\forall i \ Y_i(1) \geq Y_i(0)$

Means every ITE is nonnegative, so ITE lower bound comes up from a – b to 0 Intuitively, the ATE lower bound should raise up to 0 too

$$\mathbb{E}[Y(1) - Y(0)] \ge 0$$

Proof:

$$\mathbb{E}[Y(1) - Y(0)] = \pi \,\mathbb{E}[Y \mid T = 1] + (1 - \pi) \,\mathbb{E}[Y(1) \mid T = 0] - \pi \,\mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \,\mathbb{E}[Y \mid T = 0]$$

(Observational-Counterfactual Decomposition)

Assume treatment always helps. Mathematically, $\forall i \ Y_i(1) \geq Y_i(0)$

Means every ITE is nonnegative, so ITE lower bound comes up from a – b to 0 Intuitively, the ATE lower bound should raise up to 0 too

$$\mathbb{E}[Y(1) - Y(0)] \ge 0$$

Proof:

$$\mathbb{E}[Y(1)-Y(0)] = \pi \, \mathbb{E}[Y \mid T=1] + (1-\pi) \, \mathbb{E}[Y(1) \mid T=0] \qquad \text{(Observational-Counterfactual } -\pi \, \mathbb{E}[Y(0) \mid T=1] - (1-\pi) \, \mathbb{E}[Y \mid T=0] \qquad \text{Decomposition)}$$

Assume treatment always helps. Mathematically, $\forall i \ Y_i(1) \geq Y_i(0)$

Means every ITE is nonnegative, so ITE lower bound comes up from a – b to 0 Intuitively, the ATE lower bound should raise up to 0 too

$$\mathbb{E}[Y(1) - Y(0)] \ge 0$$

Proof:

$$\mathbb{E}[Y(1)-Y(0)] = \pi \, \mathbb{E}[Y \mid T=1] + (1-\pi) \, \underline{\mathbb{E}[Y(1) \mid T=0]} \qquad \text{(Observational-Counterfactual Decomposition)}$$

$$-\pi \, \mathbb{E}[Y(0) \mid T=1] - (1-\pi) \, \mathbb{E}[Y \mid T=0] \qquad \text{Decomposition)}$$

Assume treatment always helps. Mathematically, $\forall i \ Y_i(1) \geq Y_i(0)$

Means every ITE is nonnegative, so ITE lower bound comes up from a – b to 0 Intuitively, the ATE lower bound should raise up to 0 too

$$\mathbb{E}[Y(1) - Y(0)] \ge 0$$

Proof:

$$\mathbb{E}[Y(1) - Y(0)] = \pi \,\mathbb{E}[Y \mid T = 1] + (1 - \pi) \,\underline{\mathbb{E}[Y(1) \mid T = 0]} - \pi \,\mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \,\mathbb{E}[Y \mid T = 0]$$

(Observational-Counterfactual Decomposition)

$$\mathbb{E}[Y(1) \mid T = 0] \ge \mathbb{E}[Y(0) \mid T = 0]$$

Assume treatment always helps. Mathematically, $\forall i \ Y_i(1) \geq Y_i(0)$

Means every ITE is nonnegative, so ITE lower bound comes up from a – b to 0 Intuitively, the ATE lower bound should raise up to 0 too

$$\mathbb{E}[Y(1) - Y(0)] \ge 0$$

Proof:

$$\mathbb{E}[Y(1) - Y(0)] = \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y(1) \mid T = 0] \qquad \text{(Observation Decomposition of the properties of the propertie$$

(Observational-Counterfactual Decomposition)

$$\mathbb{E}[Y(1) \mid T = 0] \ge \mathbb{E}[Y \mid T = 0]$$

Assume treatment always helps. Mathematically, $\forall i \ Y_i(1) \geq Y_i(0)$

Means every ITE is nonnegative, so ITE lower bound comes up from a – b to 0 Intuitively, the ATE lower bound should raise up to 0 too

$$\mathbb{E}[Y(1) - Y(0)] \ge 0$$

Proof:

$$\mathbb{E}[Y(1) - Y(0)] = \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y(1) \mid T = 0] \qquad \text{(Observational-C} \\ - \pi \, \mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \, \mathbb{E}[Y \mid T = 0] \qquad \qquad \text{Decompositions} \\ \geq \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y \mid T = 0] \qquad \qquad \mathbb{E}[Y(1) \mid T = 0] \geq 0$$

(Observational-Counterfactual Decomposition)

$$\mathbb{E}[Y(1) \mid T = 0] \ge \mathbb{E}[Y \mid T = 0]$$

Assume treatment always helps. Mathematically, $\forall i \ Y_i(1) \geq Y_i(0)$

Means every ITE is nonnegative, so ITE lower bound comes up from a – b to 0 Intuitively, the ATE lower bound should raise up to 0 too

$$\mathbb{E}[Y(1) - Y(0)] \ge 0$$

Proof:

$$\mathbb{E}[Y(1) - Y(0)] = \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y(1) \mid T = 0] \qquad \text{Observation}$$

$$- \pi \, \mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \, \mathbb{E}[Y \mid T = 0] \qquad \text{Decomposition}$$

$$\geq \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y \mid T = 0] \qquad \mathbb{E}[Y(1) \mid T = 0]$$

(Observational-Counterfactual Decomposition)

$$\mathbb{E}[Y(1) \mid T = 0] \ge \mathbb{E}[Y \mid T = 0]$$

Assume treatment always helps. Mathematically, $\forall i \ Y_i(1) \geq Y_i(0)$

Means every ITE is nonnegative, so ITE lower bound comes up from a – b to 0 Intuitively, the ATE lower bound should raise up to 0 too

$$\mathbb{E}[Y(1) - Y(0)] \ge 0$$

Proof:

$$\mathbb{E}[Y(1) - Y(0)] = \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y(1) \mid T = 0]$$

$$- \pi \, \mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

$$\geq \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

$$- \mathbb{E}[Y \mid T = 0]$$

(Observational-Counterfactual Decomposition)

$$\mathbb{E}[Y(1) \mid T = 0] \ge \mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(1) \mid T = 1] \ge \mathbb{E}[Y(0) \mid T = 1]$$

Assume treatment always helps. Mathematically, $\forall i \ Y_i(1) \geq Y_i(0)$

Means every ITE is nonnegative, so ITE lower bound comes up from a – b to 0 Intuitively, the ATE lower bound should raise up to 0 too

$$\mathbb{E}[Y(1) - Y(0)] \ge 0$$

$$\mathbb{E}[Y(1) - Y(0)] = \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y(1) \mid T = 0] \qquad \text{(Observational-Counterfactual)}$$

$$- \pi \, \mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \, \mathbb{E}[Y \mid T = 0] \qquad \qquad \text{Decomposition)}$$

$$\geq \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y \mid T = 0] \qquad \qquad \mathbb{E}[Y(1) \mid T = 0] \geq \mathbb{E}[Y \mid T = 0]$$

$$- \mathbb{E}[Y(0) \mid T = 1] \geq - \mathbb{E}[Y(1) \mid T = 1]$$

Assume treatment always helps. Mathematically, $\forall i \ Y_i(1) \geq Y_i(0)$

Means every ITE is nonnegative, so ITE lower bound comes up from a – b to 0 Intuitively, the ATE lower bound should raise up to 0 too

$$\mathbb{E}[Y(1) - Y(0)] \ge 0$$

$$\mathbb{E}[Y(1) - Y(0)] = \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y(1) \mid T = 0] \qquad \text{(Observational-Counterfactual)}$$

$$- \pi \, \mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \, \mathbb{E}[Y \mid T = 0] \qquad \qquad \text{Decomposition)}$$

$$\geq \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y \mid T = 0] \qquad \qquad \mathbb{E}[Y(1) \mid T = 0] \geq \mathbb{E}[Y \mid T = 0]$$

$$- \mathbb{E}[Y(0) \mid T = 1] \geq - \mathbb{E}[Y \mid T = 1]$$

Assume treatment always helps. Mathematically, $\forall i \ Y_i(1) \geq Y_i(0)$

Means every ITE is nonnegative, so ITE lower bound comes up from a – b to 0 Intuitively, the ATE lower bound should raise up to 0 too

$$\mathbb{E}[Y(1) - Y(0)] \ge 0$$

$$\mathbb{E}[Y(1) - Y(0)] = \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y(1) \mid T = 0] \qquad \text{(Observational-Counterfactual)}$$

$$- \pi \, \mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \, \mathbb{E}[Y \mid T = 0] \qquad \text{Decomposition)}$$

$$\geq \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y \mid T = 0] \qquad \mathbb{E}[Y(1) \mid T = 0] \geq \mathbb{E}[Y \mid T = 0]$$

$$- \pi \, \mathbb{E}[Y \mid T = 1] - (1 - \pi) \, \mathbb{E}[Y \mid T = 0] \qquad - \mathbb{E}[Y(0) \mid T = 1] \geq - \mathbb{E}[Y \mid T = 1]$$

Assume treatment always helps. Mathematically, $\forall i \ Y_i(1) \geq Y_i(0)$

Means every ITE is nonnegative, so ITE lower bound comes up from a – b to 0 Intuitively, the ATE lower bound should raise up to 0 too

$$\mathbb{E}[Y(1) - Y(0)] \ge 0$$

$$\mathbb{E}[Y(1)-Y(0)] = \pi \, \mathbb{E}[Y \mid T=1] + (1-\pi) \, \mathbb{E}[Y(1) \mid T=0] \qquad \text{(Observational-Counterfactual } \\ -\pi \, \mathbb{E}[Y(0) \mid T=1] - (1-\pi) \, \mathbb{E}[Y \mid T=0] \qquad \qquad \text{Decomposition)} \\ \geq \pi \, \mathbb{E}[Y \mid T=1] + (1-\pi) \, \mathbb{E}[Y \mid T=0] \qquad \qquad \mathbb{E}[Y(1) \mid T=0] \geq \mathbb{E}[Y \mid T=0] \\ -\pi \, \mathbb{E}[Y \mid T=1] - (1-\pi) \, \mathbb{E}[Y \mid T=0] \qquad -\mathbb{E}[Y(0) \mid T=1] \geq -\mathbb{E}[Y \mid T=1] \\ = 0$$

Potential outcomes bounded between 0 (a) and 1 (b)

$$\pi = 0.3$$

$$\mathbb{E}[Y \mid T = 1] = .9$$

$$\pi = 0.3$$
 $\mathbb{E}[Y \mid T = 1] = .9$ $\mathbb{E}[Y \mid T = 0] = .2$

Potential outcomes bounded between 0 (a) and 1 (b)

$$\pi = 0.3$$

$$\mathbb{E}[Y \mid T = 1] = .9$$

$$\pi = 0.3$$
 $\mathbb{E}[Y \mid T = 1] = .9$ $\mathbb{E}[Y \mid T = 0] = .2$

No-assumptions bound: $-0.17 \le \mathbb{E}[Y(1) - Y(0)] \le 0.83$

Potential outcomes bounded between 0 (a) and 1 (b)

$$\pi = 0.3$$
 $\mathbb{E}[Y \mid T = 1] = .9$ $\mathbb{E}[Y \mid T = 0] = .2$

No-assumptions bound: $-0.17 \le \mathbb{E}[Y(1) - Y(0)] \le 0.83$

Nonnegative MTR lower bound: $\mathbb{E}[Y(1) - Y(0)] \ge 0$

Potential outcomes bounded between 0 (a) and 1 (b)

$$\pi = 0.3$$
 $\mathbb{E}[Y \mid T = 1] = .9$ $\mathbb{E}[Y \mid T = 0] = .2$

No-assumptions bound: $-0.17 \le \mathbb{E}[Y(1) - Y(0)] \le 0.83$

Nonnegative MTR lower bound: $\mathbb{E}[Y(1) - Y(0)] \ge 0$

Combining MTR lower bound with no-assumptions upper bound:

$$0 \le \mathbb{E}[Y(1) - Y(0)] \le 0.83$$

$$\forall i \ Y_i(1) \leq Y_i(0)$$

$$\forall i \ Y_i(1) \leq Y_i(0)$$

$$\mathbb{E}[Y(1) - Y(0)] \le 0$$

$$\forall i \ Y_i(1) \leq Y_i(0)$$

$$\mathbb{E}[Y(1) - Y(0)] \le 0$$

Running example

No-assumptions bound: $-0.17 \le \mathbb{E}[Y(1) - Y(0)] \le 0.83$

$$\forall i \ Y_i(1) \leq Y_i(0)$$

$$\mathbb{E}[Y(1) - Y(0)] \le 0$$

Running example

No-assumptions bound: $-0.17 \le \mathbb{E}[Y(1) - Y(0)] \le 0.83$

Combining nonpositive MTR upper bound with no-assumptions lower bound:

$$-0.17 \le \mathbb{E}[Y(1) - Y(0)] \le 0$$

Question:

Given, the nonpositive MTR assumption, prove $\mathbb{E}[Y(1) - Y(0)] \leq 0$.

Bounds

No-Assumptions Bound

Monotone Treatment Response

Monotone Treatment Selection

Optimal Treatment Selection

Sensitivity Analysis

Linear Single Confounder

Towards More General Settings

Treatment groups' potential outcomes are better than control groups':

$$\mathbb{E}[Y(1) \mid T = 1] \ge \mathbb{E}[Y(1) \mid T = 0], \quad \mathbb{E}[Y(0) \mid T = 1] \ge \mathbb{E}[Y(0) \mid T = 0]$$

Treatment groups' potential outcomes are better than control groups':

$$\mathbb{E}[Y(1) \mid T = 1] \ge \mathbb{E}[Y(1) \mid T = 0], \quad \mathbb{E}[Y(0) \mid T = 1] \ge \mathbb{E}[Y(0) \mid T = 0]$$

Under the MTS assumption, the ATE is bounded from above by the associational difference. Mathematically,

$$\mathbb{E}[Y(1) - Y(0)] \le \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

Treatment groups' potential outcomes are better than control groups':

$$\mathbb{E}[Y(1) \mid T = 1] \ge \mathbb{E}[Y(1) \mid T = 0], \quad \mathbb{E}[Y(0) \mid T = 1] \ge \mathbb{E}[Y(0) \mid T = 0]$$

Under the MTS assumption, the ATE is bounded from above by the associational difference. Mathematically,

$$\mathbb{E}[Y(1) - Y(0)] \le \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

Question: Prove the above MTS upper bound.

Potential outcomes bounded between 0 (a) and 1 (b)

$$\pi = 0.3$$

$$\mathbb{E}[Y \mid T = 1] = .9$$

$$\pi = 0.3$$
 $\mathbb{E}[Y \mid T = 1] = .9$ $\mathbb{E}[Y \mid T = 0] = .2$

Potential outcomes bounded between 0 (a) and 1 (b)

$$\pi = 0.3$$

$$\mathbb{E}[Y \mid T = 1] = .9$$

$$\pi = 0.3$$
 $\mathbb{E}[Y \mid T = 1] = .9$ $\mathbb{E}[Y \mid T = 0] = .2$

No-assumptions bound: $-0.17 \le \mathbb{E}[Y(1) - Y(0)] \le 0.83$

Potential outcomes bounded between 0 (a) and 1 (b)

$$\pi = 0.3$$
 $\mathbb{E}[Y \mid T = 1] = .9$ $\mathbb{E}[Y \mid T = 0] = .2$

$$\mathbb{E}[Y \mid T=1] = .9$$

$$\mathbb{E}[Y \mid T = 0] = .2$$

No-assumptions bound: $-0.17 \le \mathbb{E}[Y(1) - Y(0)] \le 0.83$

MTS upper bound:
$$\mathbb{E}[Y(1) - Y(0)] \leq \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

Potential outcomes bounded between 0 (a) and 1 (b)

$$\pi = 0.3$$
 $\mathbb{E}[Y \mid T = 1] = .9$ $\mathbb{E}[Y \mid T = 0] = .2$

No-assumptions bound: $-0.17 \le \mathbb{E}[Y(1) - Y(0)] \le 0.83$

MTS upper bound:
$$\mathbb{E}[Y(1) - Y(0)] \leq \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

Combining MTS upper bound with no-assumptions lower bound:

$$-0.17 \le \mathbb{E}[Y(1) - Y(0)] \le 0.7$$

Potential outcomes bounded between 0 (a) and 1 (b)

$$\pi = 0.3$$
 $\mathbb{E}[Y \mid T = 1] = .9$ $\mathbb{E}[Y \mid T = 0] = .2$

No-assumptions bound: $-0.17 \le \mathbb{E}[Y(1) - Y(0)] \le 0.83$

MTS upper bound:
$$\mathbb{E}[Y(1) - Y(0)] \leq \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

Combining MTS upper bound with no-assumptions lower bound: $-0.17 \le \mathbb{E}[Y(1) - Y(0)] \le 0.7$

Adding nonnegative MTR assumption and combining MTS upper bound with MTR lower bound ($\mathbb{E}[Y(1) - Y(0)] \ge 0$):

$$0 \le \mathbb{E}[Y(1) - Y(0)] \le 0.7$$

Bounds

No-Assumptions Bound

Monotone Treatment Response

Monotone Treatment Selection

Optimal Treatment Selection

Sensitivity Analysis

Linear Single Confounder

Towards More General Settings

$$T_i = 1 \implies Y_i(1) \ge Y_i(0), \quad T_i = 0 \implies Y_i(0) > Y_i(1)$$

$$T_i = 1 \implies Y_i(1) \ge Y_i(0), \quad T_i = 0 \implies Y_i(0) > Y_i(1)$$

$$\mathbb{E}[Y(1) \mid T = 0] \le \mathbb{E}[Y(0) \mid T = 0] = \mathbb{E}[Y \mid T = 0]$$

$$T_i = 1 \implies Y_i(1) \ge Y_i(0), \quad T_i = 0 \implies Y_i(0) > Y_i(1)$$

$$\mathbb{E}[Y(1) \mid T = 0] \le \mathbb{E}[Y \mid T = 0]$$

$$T_i = 1 \implies Y_i(1) \ge Y_i(0), \quad T_i = 0 \implies Y_i(0) > Y_i(1)$$

$$\mathbb{E}[Y(1) \mid T = 0] \le \mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(0) \mid T = 1] \le \mathbb{E}[Y(1) \mid T = 1] = \mathbb{E}[Y \mid T = 1]$$

$$T_i = 1 \implies Y_i(1) \ge Y_i(0), \quad T_i = 0 \implies Y_i(0) > Y_i(1)$$

$$\mathbb{E}[Y(1) \mid T = 0] \le \mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(0) \mid T=1] \leq \mathbb{E}[Y \mid T=1]$$

OTS assumption tells us that $\mathbb{E}[Y(1) \mid T=0] \leq \mathbb{E}[Y \mid T=0]$

OTS assumption tells us that $\mathbb{E}[Y(1) \mid T=0] \leq \mathbb{E}[Y \mid T=0]$

$$\mathbb{E}[Y(1) - Y(0)] = \pi \,\mathbb{E}[Y \mid T = 1] + (1 - \pi) \,\mathbb{E}[Y(1) \mid T = 0] - \pi \,\mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \,\mathbb{E}[Y \mid T = 0]$$

(Observational-Counterfactual Decomposition)

OTS assumption tells us that $\mathbb{E}[Y(1) \mid T=0] \leq \mathbb{E}[Y \mid T=0]$

$$\mathbb{E}[Y(1) - Y(0)] = \pi \,\mathbb{E}[Y \mid T = 1] + (1 - \pi) \,\mathbb{E}[Y(1) \mid T = 0]$$
$$- \pi \,\mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \,\mathbb{E}[Y \mid T = 0]$$
$$\leq \pi \,\mathbb{E}[Y \mid T = 1] + (1 - \pi) \,\mathbb{E}[Y \mid T = 0]$$
$$- \pi \,a - (1 - \pi) \,\mathbb{E}[Y \mid T = 0]$$

(Observational-Counterfactual Decomposition)

OTS assumption tells us that $\mathbb{E}[Y(1) \mid T=0] \leq \mathbb{E}[Y \mid T=0]$

$$\mathbb{E}[Y(1) - Y(0)] = \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y(1) \mid T = 0]$$

$$- \pi \, \mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

$$\leq \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

$$- \pi \, a - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

$$= \pi \, \mathbb{E}[Y \mid T = 1] - \pi \, a$$

OTS assumption tells us that $\mathbb{E}[Y(0) \mid T=1] \leq \mathbb{E}[Y \mid T=1]$

OTS assumption tells us that $-\mathbb{E}[Y(0) \mid T=1] \ge -\mathbb{E}[Y \mid T=1]$

OTS assumption tells us that $-\mathbb{E}[Y(0) \mid T=1] \ge -\mathbb{E}[Y \mid T=1]$

$$\mathbb{E}[Y(1) - Y(0)] = \pi \,\mathbb{E}[Y \mid T = 1] + (1 - \pi) \,\mathbb{E}[Y(1) \mid T = 0] - \pi \,\mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \,\mathbb{E}[Y \mid T = 0]$$

OTS assumption tells us that $-\mathbb{E}[Y(0) \mid T=1] \ge -\mathbb{E}[Y \mid T=1]$

$$\mathbb{E}[Y(1) - Y(0)] = \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y(1) \mid T = 0]$$

$$- \pi \, \mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

$$\ge \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, a$$

$$- \pi \, \mathbb{E}[Y \mid T = 1] - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

OTS assumption tells us that $-\mathbb{E}[Y(0) \mid T=1] \ge -\mathbb{E}[Y \mid T=1]$

$$\mathbb{E}[Y(1) - Y(0)] = \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y(1) \mid T = 0]$$

$$- \pi \, \mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

$$\ge \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, a$$

$$- \pi \, \mathbb{E}[Y \mid T = 1] - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

$$= (1 - \pi) \, a - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(1) - Y(0)] < \pi \, \mathbb{E}[Y \mid T = 1] - \pi \, a$$

$$\mathbb{E}[Y(1) - Y(0)] \ge (1 - \pi) \, a - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$
Interval Length = $\pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y \mid T = 0] - a$

$$\mathbb{E}[Y(1) - Y(0)] < \pi \, \mathbb{E}[Y \mid T = 1] - \pi \, a$$

$$\mathbb{E}[Y(1) - Y(0)] \ge (1 - \pi) \, a - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$
Interval Length = $\pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y \mid T = 0] - a$

Running example

Potential outcomes bounded between 0 (a) and 1 (b)

$$\pi = 0.3$$
 $\mathbb{E}[Y \mid T = 1] = .9$ $\mathbb{E}[Y \mid T = 0] = .2$

$$\mathbb{E}[Y(1) - Y(0)] < \pi \, \mathbb{E}[Y \mid T = 1] - \pi \, a$$

$$\mathbb{E}[Y(1) - Y(0)] \ge (1 - \pi) \, a - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$
Interval Length = $\pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y \mid T = 0] - a$

Running example

Potential outcomes bounded between 0 (a) and 1 (b)

$$\pi = 0.3$$
 $\mathbb{E}[Y \mid T = 1] = .9$ $\mathbb{E}[Y \mid T = 0] = .2$

No-assumptions bound: $-0.17 \le \mathbb{E}[Y(1) - Y(0)] \le 0.83$

$$\mathbb{E}[Y(1) - Y(0)] < \pi \, \mathbb{E}[Y \mid T = 1] - \pi \, a$$

$$\mathbb{E}[Y(1) - Y(0)] \ge (1 - \pi) \, a - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$
Interval Length = $\pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y \mid T = 0] - a$

Running example

Potential outcomes bounded between 0 (a) and 1 (b)

$$\pi = 0.3$$
 $\mathbb{E}[Y \mid T = 1] = .9$ $\mathbb{E}[Y \mid T = 0] = .2$

No-assumptions bound: $-0.17 \le \mathbb{E}[Y(1) - Y(0)] \le 0.83$

OTS Bound 1:
$$-0.14 \le \mathbb{E}[Y(1) - Y(0)] \le 0.27$$

Interval Length = 0.41

Bound that identifies the sign

OTS Assumption: $T_i = 1 \implies Y_i(1) \ge Y_i(0)$, $T_i = 0 \implies Y_i(0) > Y_i(1)$

OTS Assumption: $T_i = 1 \implies Y_i(1) \ge Y_i(0)$, $T_i = 0 \implies Y_i(0) > Y_i(1)$

OTS Bound 1 implication we used: $\mathbb{E}[Y(1) \mid T=0] \leq \mathbb{E}[Y \mid T=0]$

OTS Assumption: $T_i = 1 \implies Y_i(1) \ge Y_i(0)$, $T_i = 0 \implies Y_i(0) > Y_i(1)$

OTS Bound 1 implication we used: $\mathbb{E}[Y(1) \mid T=0] \leq \mathbb{E}[Y \mid T=0]$

OTS Bound 2 implication we'll use: $\mathbb{E}[Y(1) \mid T=0] \leq \mathbb{E}[Y \mid T=1]$

OTS Assumption: $T_i = 1 \implies Y_i(1) \ge Y_i(0)$, $T_i = 0 \implies Y_i(0) > Y_i(1)$

OTS Bound 1 implication we used: $\mathbb{E}[Y(1) \mid T=0] \leq \mathbb{E}[Y \mid T=0]$

OTS Bound 2 implication we'll use: $\mathbb{E}[Y(1) \mid T=0] \leq \mathbb{E}[Y \mid T=1]$

Proof:
$$\mathbb{E}[Y(1) \mid T = 0] = \mathbb{E}[Y(1) \mid Y(0) > Y(1)]$$

OTS Assumption: $T_i = 1 \implies Y_i(1) \ge Y_i(0)$, $T_i = 0 \implies Y_i(0) > Y_i(1)$

OTS Bound 1 implication we used: $\mathbb{E}[Y(1) \mid T=0] \leq \mathbb{E}[Y \mid T=0]$

OTS Bound 2 implication we'll use: $\mathbb{E}[Y(1) \mid T = 0] \leq \mathbb{E}[Y \mid T = 1]$

Proof:
$$\mathbb{E}[Y(1) \mid T = 0] = \mathbb{E}[Y(1) \mid Y(0) > Y(1)]$$

OTS Assumption: $T_i = 1 \implies Y_i(1) \ge Y_i(0)$, $T_i = 0 \implies Y_i(0) > Y_i(1)$

OTS Bound 1 implication we used: $\mathbb{E}[Y(1) \mid T=0] \leq \mathbb{E}[Y \mid T=0]$

OTS Bound 2 implication we'll use: $\mathbb{E}[Y(1) \mid T=0] \leq \mathbb{E}[Y \mid T=1]$

Proof:
$$\mathbb{E}[Y(1) \mid T = 0] = \mathbb{E}[Y(1) \mid Y(0) > Y(1)]$$

 $\leq \mathbb{E}[Y(1) \mid Y(0) \leq Y(1)]$

OTS Assumption: $T_i = 1 \implies Y_i(1) \ge Y_i(0)$, $T_i = 0 \implies Y_i(0) > Y_i(1)$

OTS Bound 1 implication we used: $\mathbb{E}[Y(1) \mid T = 0] \leq \mathbb{E}[Y \mid T = 0]$

OTS Bound 2 implication we'll use: $\mathbb{E}[Y(1) \mid T=0] \leq \mathbb{E}[Y \mid T=1]$

Proof:
$$\mathbb{E}[Y(1) \mid T = 0] = \mathbb{E}[Y(1) \mid Y(0) > Y(1)]$$

 $\leq \mathbb{E}[Y(1) \mid Y(0) \leq Y(1)]$
 $= \mathbb{E}[Y(1) \mid T = 1]$

OTS Assumption: $T_i = 1 \implies Y_i(1) \ge Y_i(0)$, $T_i = 0 \implies Y_i(0) > Y_i(1)$ Contrapositive: $T_i = 1 \iff Y_i(0) \le Y_i(1)$

OTS Bound 1 implication we used: $\mathbb{E}[Y(1) \mid T=0] \leq \mathbb{E}[Y \mid T=0]$

OTS Bound 2 implication we'll use: $\mathbb{E}[Y(1) \mid T = 0] \leq \mathbb{E}[Y \mid T = 1]$

Proof:
$$\mathbb{E}[Y(1) \mid T = 0] = \mathbb{E}[Y(1) \mid Y(0) > Y(1)]$$

 $\leq \mathbb{E}[Y(1) \mid Y(0) \leq Y(1)]$
 $= \mathbb{E}[Y(1) \mid T = 1]$

OTS Assumption: $T_i = 1 \implies Y_i(1) \ge Y_i(0)$, $T_i = 0 \implies Y_i(0) > Y_i(1)$ Contrapositive: $T_i = 1 \iff Y_i(0) \le Y_i(1)$

OTS Bound 1 implication we used: $\mathbb{E}[Y(1) \mid T=0] \leq \mathbb{E}[Y \mid T=0]$

OTS Bound 2 implication we'll use: $\mathbb{E}[Y(1) \mid T=0] \leq \mathbb{E}[Y \mid T=1]$

Proof:
$$\mathbb{E}[Y(1) \mid T = 0] = \mathbb{E}[Y(1) \mid Y(0) > Y(1)]$$

 $\leq \mathbb{E}[Y(1) \mid Y(0) \leq Y(1)]$
 $= \mathbb{E}[Y(1) \mid T = 1]$
 $= \mathbb{E}[Y \mid T = 1]$

OTS assumption tells us that $\mathbb{E}[Y(1) \mid T=0] \leq \mathbb{E}[Y \mid T=1]$

OTS assumption tells us that $\mathbb{E}[Y(1) \mid T = 0] \leq \mathbb{E}[Y \mid T = 1]$

$$\mathbb{E}[Y(1) - Y(0)] = \pi \,\mathbb{E}[Y \mid T = 1] + (1 - \pi) \,\mathbb{E}[Y(1) \mid T = 0] - \pi \,\mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \,\mathbb{E}[Y \mid T = 0]$$

OTS assumption tells us that $\mathbb{E}[Y(1) \mid T = 0] \leq \mathbb{E}[Y \mid T = 1]$

$$\mathbb{E}[Y(1) - Y(0)] = \pi \,\mathbb{E}[Y \mid T = 1] + (1 - \pi) \,\mathbb{E}[Y(1) \mid T = 0]$$

$$- \pi \,\mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \,\mathbb{E}[Y \mid T = 0]$$

$$\leq \pi \,\mathbb{E}[Y \mid T = 1] + (1 - \pi) \,\mathbb{E}[Y \mid T = 1]$$

$$- \pi \,a - (1 - \pi) \,\mathbb{E}[Y \mid T = 0]$$

OTS assumption tells us that $\mathbb{E}[Y(1) \mid T = 0] \leq \mathbb{E}[Y \mid T = 1]$

$$\mathbb{E}[Y(1) - Y(0)] = \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y(1) \mid T = 0]$$

$$- \pi \, \mathbb{E}[Y(0) \mid T = 1] - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

$$\leq \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, \mathbb{E}[Y \mid T = 1]$$

$$- \pi \, a - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

$$= \mathbb{E}[Y \mid T = 1] - \pi \, a - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

Question:

Prove a new lower bound using the version of the OTS assumption that we used in the last slide.

$$\mathbb{E}[Y(1) - Y(0)] \le \mathbb{E}[Y \mid T = 1] - \pi a - (1 - \pi) \mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(1) - Y(0)] \ge \pi \mathbb{E}[Y \mid T = 1] + (1 - \pi) a - \mathbb{E}[Y \mid T = 0]$$
Interval Length = $(1 - \pi) \mathbb{E}[Y \mid T = 1] + \pi \mathbb{E}[Y \mid T = 0] - a$

$$\mathbb{E}[Y(1) - Y(0)] \le \mathbb{E}[Y \mid T = 1] - \pi \, a - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(1) - Y(0)] \ge \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, a - \mathbb{E}[Y \mid T = 0]$$
Interval Length = $(1 - \pi) \, \mathbb{E}[Y \mid T = 1] + \pi \, \mathbb{E}[Y \mid T = 0] - a$

Running example

Potential outcomes bounded between 0 (a) and 1 (b)

$$\pi = 0.3$$
 $\mathbb{E}[Y \mid T = 1] = .9$ $\mathbb{E}[Y \mid T = 0] = .2$

$$\mathbb{E}[Y(1) - Y(0)] \le \mathbb{E}[Y \mid T = 1] - \pi \, a - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(1) - Y(0)] \ge \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, a - \mathbb{E}[Y \mid T = 0]$$
Interval Length = $(1 - \pi) \, \mathbb{E}[Y \mid T = 1] + \pi \, \mathbb{E}[Y \mid T = 0] - a$

Running example

Potential outcomes bounded between 0 (a) and 1 (b)

$$\pi = 0.3$$
 $\mathbb{E}[Y \mid T = 1] = .9$ $\mathbb{E}[Y \mid T = 0] = .2$

No-assumptions bound: $-0.17 \le \mathbb{E}[Y(1) - Y(0)] \le 0.83$

$$\mathbb{E}[Y(1) - Y(0)] \le \mathbb{E}[Y \mid T = 1] - \pi \, a - (1 - \pi) \, \mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(1) - Y(0)] \ge \pi \, \mathbb{E}[Y \mid T = 1] + (1 - \pi) \, a - \mathbb{E}[Y \mid T = 0]$$
Interval Length = $(1 - \pi) \, \mathbb{E}[Y \mid T = 1] + \pi \, \mathbb{E}[Y \mid T = 0] - a$

Running example

Potential outcomes bounded between 0 (a) and 1 (b)

$$\pi = 0.3$$
 $\mathbb{E}[Y \mid T = 1] = .9$ $\mathbb{E}[Y \mid T = 0] = .2$

No-assumptions bound:
$$-0.17 \le \mathbb{E}[Y(1) - Y(0)] \le 0.83$$

OTS Bound 2:
$$0.07 \le \mathbb{E}[Y(1) - Y(0)] \le 0.76$$

Interval Length = 0.69

$$\mathbb{E}[Y(1) - Y(0)] \le \mathbb{E}[Y \mid T = 1] - \pi a - (1 - \pi) \mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(1) - Y(0)] \ge \pi \mathbb{E}[Y \mid T = 1] + (1 - \pi) a - \mathbb{E}[Y \mid T = 0]$$
Interval Length = $(1 - \pi) \mathbb{E}[Y \mid T = 1] + \pi \mathbb{E}[Y \mid T = 0] - a$

Running example

Potential outcomes bounded between 0 (a) and 1 (b)

$$\pi = 0.3$$
 $\mathbb{E}[Y \mid T = 1] = .9$ $\mathbb{E}[Y \mid T = 0] = .2$

No-assumptions bound: $-0.17 \le \mathbb{E}[Y(1) - Y(0)] \le 0.83$

OTS Bound 2:
$$0.07 \le \mathbb{E}[Y(1) - Y(0)] \le 0.76$$

Interval Length = 0.69

Identified the sign of the effect!

Comparing and Mixing OTS Bounds

Potential outcomes bounded between 0 (a) and 1 (b)

$$\pi = 0.3$$
 $\mathbb{E}[Y \mid T = 1] = .9$ $\mathbb{E}[Y \mid T = 0] = .2$

Comparing and Mixing OTS Bounds

Potential outcomes bounded between 0 (a) and 1 (b)

$$\pi = 0.3$$

$$\mathbb{E}[Y \mid T=1] = .9$$

$$\pi = 0.3$$
 $\mathbb{E}[Y \mid T = 1] = .9$ $\mathbb{E}[Y \mid T = 0] = .2$

No-assumptions bound: $-0.17 \le \mathbb{E}[Y(1) - Y(0)] \le 0.83$

Potential outcomes bounded between 0 (a) and 1 (b)

$$\pi = 0.3$$

$$\mathbb{E}[Y \mid T = 1] = .9$$

$$\pi = 0.3$$
 $\mathbb{E}[Y \mid T = 1] = .9$ $\mathbb{E}[Y \mid T = 0] = .2$

No-assumptions bound: $-0.17 \le \mathbb{E}[Y(1) - Y(0)] \le 0.83$

OTS Bound 1:
$$-0.14 \le \mathbb{E}[Y(1) - Y(0)] \le 0.27$$

Interval Length = 0.41

Potential outcomes bounded between 0 (a) and 1 (b)

$$\pi = 0.3$$

$$\mathbb{E}[Y \mid T = 1] = .9$$

$$\pi = 0.3$$
 $\mathbb{E}[Y \mid T = 1] = .9$ $\mathbb{E}[Y \mid T = 0] = .2$

No-assumptions bound: $-0.17 \le \mathbb{E}[Y(1) - Y(0)] \le 0.83$

OTS Bound 1:
$$-0.14 \le \mathbb{E}[Y(1) - Y(0)] \le 0.27$$

Interval Length = 0.41

OTS Bound 2:
$$0.07 \le \mathbb{E}[Y(1) - Y(0)] \le 0.76$$

Interval Length = 0.69

Potential outcomes bounded between 0 (a) and 1 (b)

$$\pi = 0.3$$

$$\mathbb{E}[Y \mid T = 1] = .9$$

$$\pi = 0.3$$
 $\mathbb{E}[Y \mid T = 1] = .9$ $\mathbb{E}[Y \mid T = 0] = .2$

No-assumptions bound: $-0.17 \le \mathbb{E}[Y(1) - Y(0)] \le 0.83$

OTS Bound 1:
$$-0.14 \le \mathbb{E}[Y(1) - Y(0)] \le 0.27$$

Interval Length = 0.41

OTS Bound 2:
$$0.07 \le \mathbb{E}[Y(1) - Y(0)] \le 0.76$$

Interval Length = 0.69

Identified the sign of the effect, but gives a 68% larger interval

Potential outcomes bounded between 0 (a) and 1 (b)

$$\pi = 0.3$$

$$\mathbb{E}[Y \mid T = 1] = .9$$

$$\pi = 0.3$$
 $\mathbb{E}[Y \mid T = 1] = .9$ $\mathbb{E}[Y \mid T = 0] = .2$

No-assumptions bound: $-0.17 \le \mathbb{E}[Y(1) - Y(0)] \le 0.83$

OTS Bound 1:
$$-0.14 \le \mathbb{E}[Y(1) - Y(0)] \le 0.27$$

Interval Length = 0.41

OTS Bound 2:
$$0.07 \le \mathbb{E}[Y(1) - Y(0)] \le 0.76$$

Interval Length = 0.69

Identified the sign of the effect, but gives a 68% larger interval

OTS Upper Bound 1 and OTS Lower Bound 2:

$$0.07 \le \mathbb{E}[Y(1) - Y(0)] \le 0.27$$

Interval Length = 0.2

Bounds

No-Assumptions Bound

Monotone Treatment Response

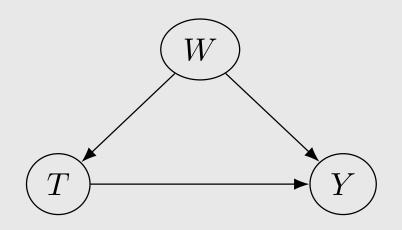
Monotone Treatment Selection

Optimal Treatment Selection

Sensitivity Analysis

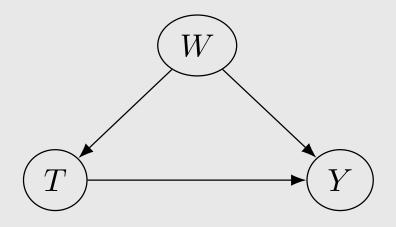
Linear Single Confounder

Towards More General Settings



$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_{W} \left[\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W] \right]$$

Last section, we completely threw out the unconfoundedness assumption.

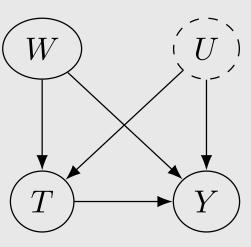


$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_{W} \left[\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W] \right]$$

Last section, we completely threw out the unconfoundedness assumption.

Now, we assume the observed W and the unobserved U gives us

unconfoundedness

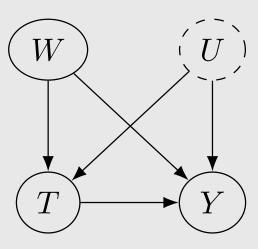


$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_{W,U} \left[\mathbb{E}[Y \mid T = 1, W, U] - \mathbb{E}[Y \mid T = 0, W, U] \right]$$

Last section, we completely threw out the unconfoundedness assumption.

Now, we assume the observed W and the unobserved U gives us

unconfoundedness



$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_{W,U} \left[\mathbb{E}[Y \mid T = 1, W, U] - \mathbb{E}[Y \mid T = 0, W, U] \right]$$

$$\stackrel{?}{\approx} \mathbb{E}_{W} \left[\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W] \right]$$

Bounds

No-Assumptions Bound

Monotone Treatment Response

Monotone Treatment Selection

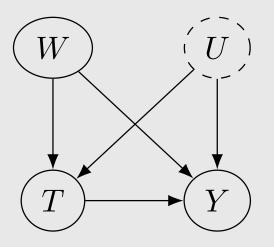
Optimal Treatment Selection

Sensitivity Analysis

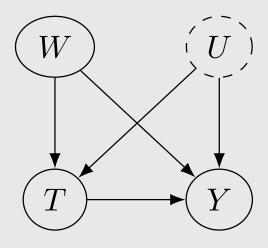
Linear Single Confounder

Towards More General Settings

Linear SCM



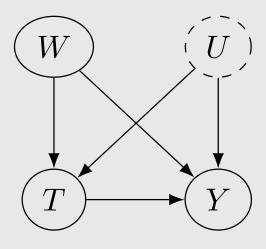
Linear SCM



$$T := \alpha_w W + \alpha_u U$$

$$Y := \beta_w W + \beta_u U + \delta T$$

Linear SCM



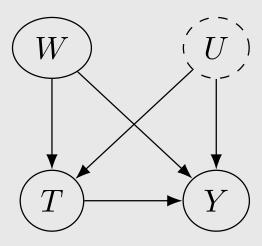
$$T := \alpha_w W + \alpha_u U$$

$$Y := \beta_w W + \beta_u U + \underline{\delta} T$$

Goal: recover δ

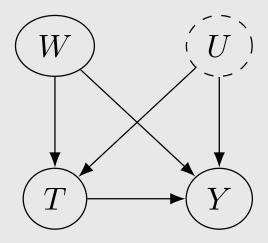
$$T := \alpha_w W + \alpha_u U$$

$$Y := \beta_w W + \beta_u U + \delta T$$



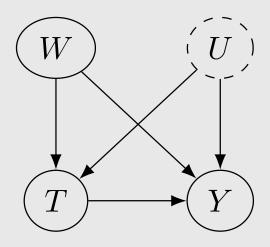
$$T := \alpha_w W + \alpha_u U$$

$$Y := \beta_w W + \beta_u U + \delta T$$



$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_{W,U} \left[\mathbb{E}[Y \mid T = 1, W, U] - \mathbb{E}[Y \mid T = 0, W, U] \right] = \delta$$

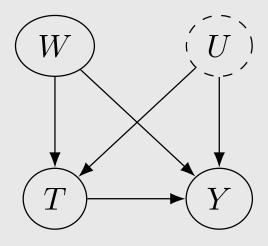
$$T := \alpha_w W + \alpha_u U$$
$$Y := \beta_w W + \beta_u U + \delta T$$



$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_{W,U} \left[\mathbb{E}[Y \mid T = 1, W, U] - \mathbb{E}[Y \mid T = 0, W, U] \right] = \delta$$

$$\mathbb{E}_{W} \left[\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W] \right] \stackrel{?}{=}$$

$$T := \alpha_w W + \alpha_u U$$
$$Y := \beta_w W + \beta_u U + \delta T$$

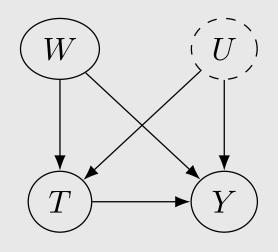


$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_{W,U} \left[\mathbb{E}[Y \mid T = 1, W, U] - \mathbb{E}[Y \mid T = 0, W, U] \right] = \delta$$

$$\mathbb{E}_{W} \left[\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W] \right] = \delta + \frac{\beta_{u}}{\alpha_{u}}$$

$$T := \alpha_w W + \alpha_u U$$

$$Y := \beta_w W + \beta_u U + \delta T$$



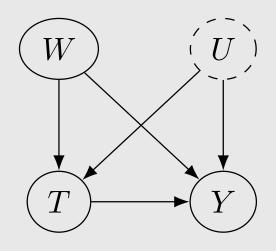
Proof coming after next slide

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_{W,U} \left[\mathbb{E}[Y \mid T = 1, W, U] - \mathbb{E}[Y \mid T = 0, W, U] \right] = \delta$$

$$\mathbb{E}_{W} \left[\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W] \right] = \delta + \frac{\beta_{u}}{\alpha_{u}}$$

$$T := \alpha_w W + \alpha_u U$$

$$Y := \beta_w W + \beta_u U + \delta T$$



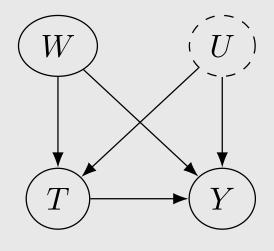
Proof coming after next slide

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_{W,U} \left[\mathbb{E}[Y \mid T = 1, W, U] - \mathbb{E}[Y \mid T = 0, W, U] \right] = \delta$$

$$\mathbb{E}_{W} \left[\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W] \right] = \delta + \frac{\beta_{u}}{\alpha_{u}}$$

Bias of
$$\mathbb{E}_W \left[\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W] \right] = \delta + \frac{\beta_u}{\alpha_u} - \delta$$

$$T := \alpha_w W + \alpha_u U$$
$$Y := \beta_w W + \beta_u U + \delta T$$

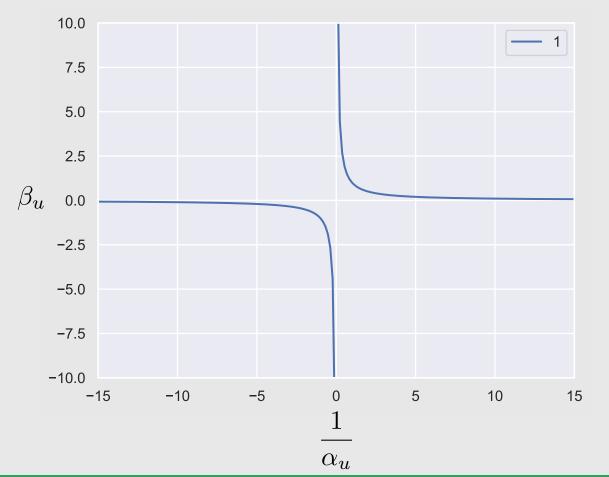


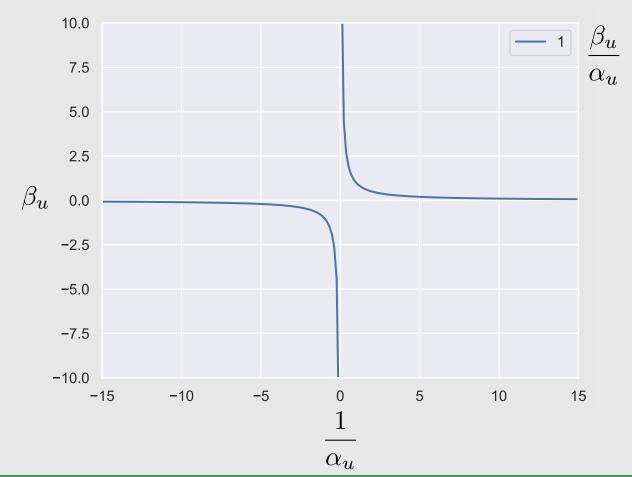
Proof coming after next slide

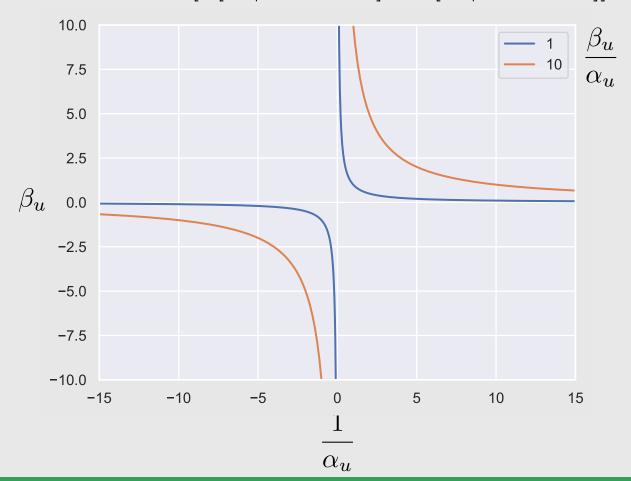
$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_{W,U} \left[\mathbb{E}[Y \mid T = 1, W, U] - \mathbb{E}[Y \mid T = 0, W, U] \right] = \delta$$

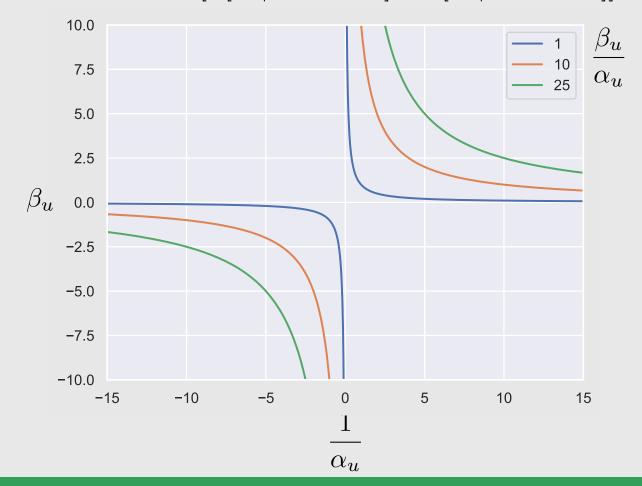
$$\mathbb{E}_{W} \left[\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W] \right] = \delta + \frac{\beta_{u}}{\alpha_{u}}$$

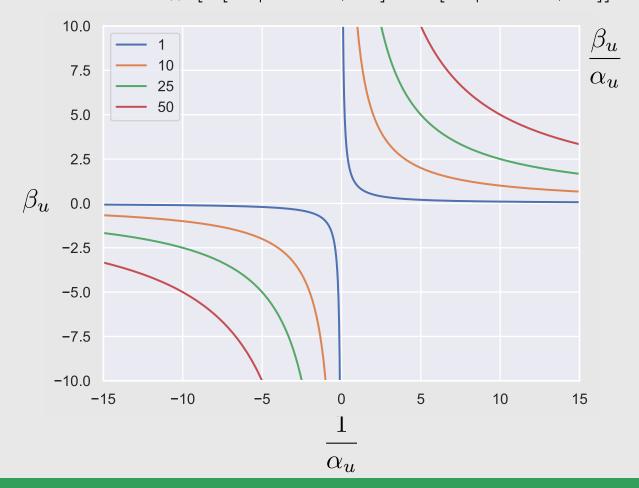
Bias of
$$\mathbb{E}_W \left[\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W] \right] = \delta + \frac{\beta_u}{\alpha_u} - \delta = \frac{\beta_u}{\alpha_u}$$

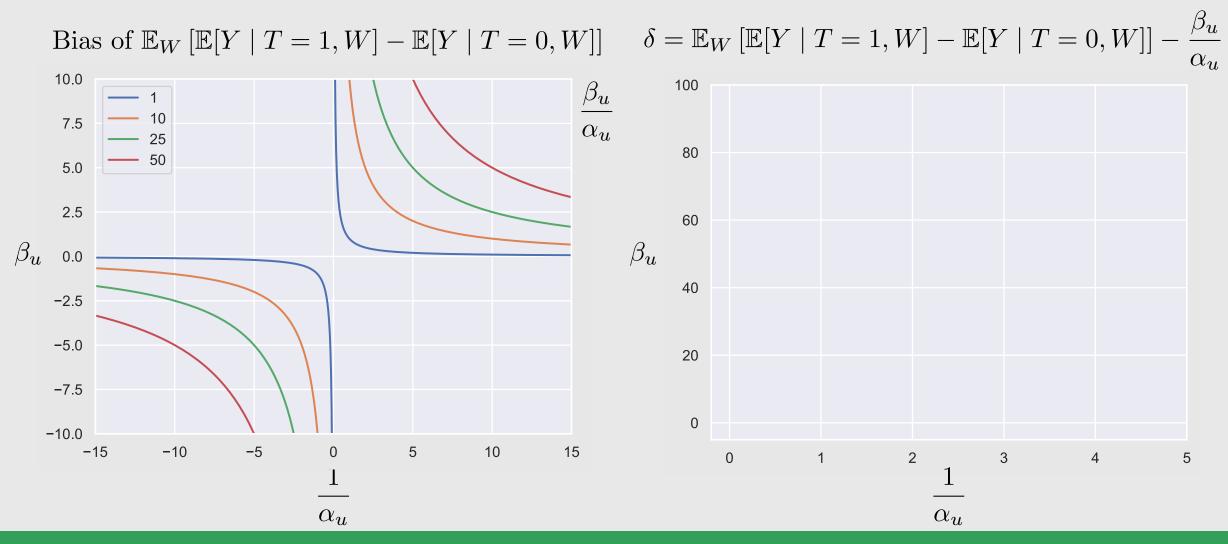


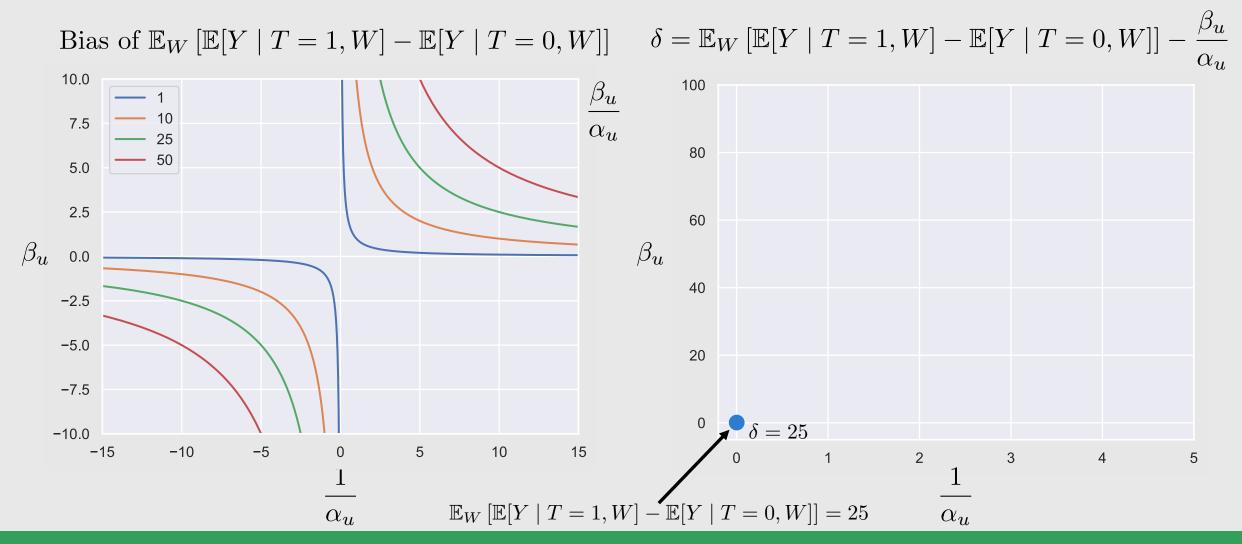


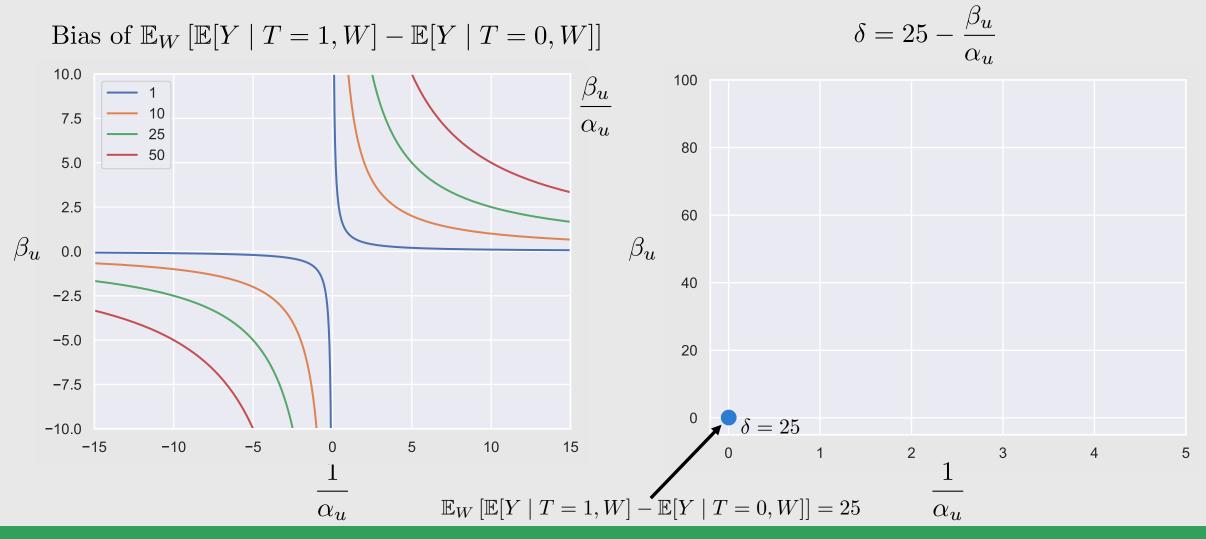


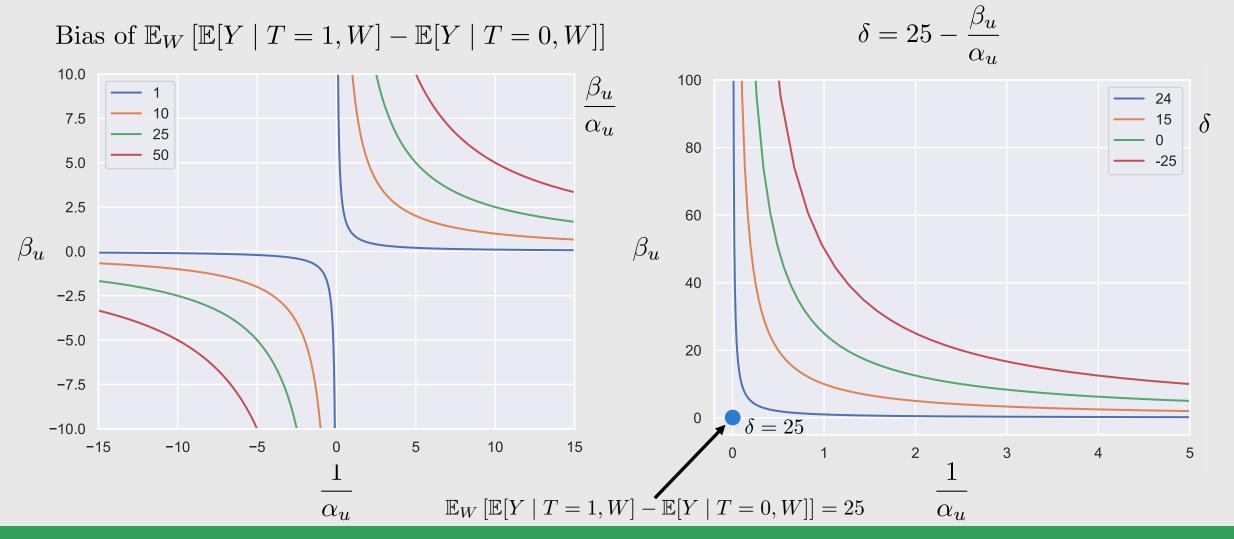












Assumed SCM:

$$T := \alpha_w W + \alpha_u U$$

$$Y := \beta_w W + \beta_u U + \delta T$$

Assumed SCM:
$$T := \alpha_w W + \alpha_u U$$
$$Y := \beta_w W + \beta_u U + \delta T$$

Result:

The confounding bias of adjusting for just W (and not U) is $\frac{\beta_u}{\alpha_u}$. Formally,

$$\mathbb{E}_{W} \left[\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W] \right]$$
$$- \mathbb{E}_{W,U} \left[\mathbb{E}[Y \mid T = 1, W, U] - \mathbb{E}[Y \mid T = 0, W, U] \right] = \frac{\beta_{u}}{\alpha_{u}}$$

Assumed SCM:
$$T := \alpha_w W + \alpha_u U$$
$$Y := \beta_w W + \beta_u U + \delta T$$

Result:

The confounding bias of adjusting for just W (and not U) is $\frac{\beta_u}{\alpha_u}$. Formally,

$$\mathbb{E}_{W} \left[\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W] \right]$$
$$- \mathbb{E}_{W,U} \left[\mathbb{E}[Y \mid T = 1, W, U] - \mathbb{E}[Y \mid T = 0, W, U] \right] = \frac{\beta_{u}}{\alpha_{u}}$$

Proof Outline:

1. Get a closed-form expression for $\mathbb{E}_W [\mathbb{E}[Y \mid T = t, W]]$ in terms of α_w , α_u , β_w , and β_u .

Assumed SCM:
$$T := \alpha_w W + \alpha_u U$$
$$Y := \beta_w W + \beta_u U + \delta T$$

Result:

The confounding bias of adjusting for just W (and not U) is $\frac{\beta_u}{\alpha_u}$. Formally,

$$\mathbb{E}_{W} \left[\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W] \right]$$
$$- \mathbb{E}_{W,U} \left[\mathbb{E}[Y \mid T = 1, W, U] - \mathbb{E}[Y \mid T = 0, W, U] \right] = \frac{\beta_{u}}{\alpha_{u}}$$

Proof Outline:

- 1. Get a closed-form expression for $\mathbb{E}_W [\mathbb{E}[Y \mid T = t, W]]$ in terms of α_w , α_u , β_w , and β_u .
- 2. Use step 1 to get a closed-form expression for the difference

$$\mathbb{E}_W \left[\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W] \right]$$

Assumed SCM:
$$T := \alpha_w W + \alpha_u U$$
$$Y := \beta_w W + \beta_u U + \delta T$$

Result:

The confounding bias of adjusting for just W (and not U) is $\frac{\beta_u}{\alpha_u}$. Formally,

$$\mathbb{E}_{W} \left[\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W] \right]$$
$$- \mathbb{E}_{W,U} \left[\mathbb{E}[Y \mid T = 1, W, U] - \mathbb{E}[Y \mid T = 0, W, U] \right] = \frac{\beta_{u}}{\alpha_{u}}$$

Proof Outline:

- 1. Get a closed-form expression for $\mathbb{E}_W [\mathbb{E}[Y \mid T = t, W]]$ in terms of α_w , α_u , β_w , and β_u .
- 2. Use step 1 to get a closed-form expression for the difference $\mathbb{E}_W \left[\mathbb{E}[Y \mid T=1, W] \mathbb{E}[Y \mid T=0, W] \right]$
- 3. Subtract off $\mathbb{E}_{W,U} [\mathbb{E}[Y \mid T=1, W, U] \mathbb{E}[Y \mid T=0, W, U]] = \delta$

Assumed SCM:
$$T := \alpha_w W + \alpha_u U$$
$$Y := \beta_w W + \beta_u U + \delta T$$

Get a closed-form expression for $\mathbb{E}_W [\mathbb{E}[Y \mid T = t, W]]$ in terms of α_w , α_u , β_w , and β_u .

Assumed SCM:
$$T := \alpha_w W + \alpha_u U$$
$$Y := \beta_w W + \beta_u U + \delta T$$

$$\mathbb{E}_W \left[\mathbb{E}[Y \mid T = t, W] \right]$$

Assumed SCM:

$$T := \alpha_w W + \alpha_u U$$

$$Y := \beta_w W + \beta_u U + \delta T$$

$$\mathbb{E}_W \left[\mathbb{E}[Y \mid T = t, W] \right]$$

$$T := \alpha_w W + \alpha_u U$$
$$Y := \beta_w W + \beta_u U + \delta T$$

$$\mathbb{E}_{W} \left[\mathbb{E}[Y \mid T = t, W] \right] = \mathbb{E}_{W} \left[\mathbb{E}[\beta_{w}W + \beta_{u}U + \delta T \mid T = t, W] \right]$$

Assumed SCM:
$$T := \alpha_w W + \alpha_u U$$
$$Y := \beta_w W + \beta_u U + \delta T$$

$$\mathbb{E}_{W} \left[\mathbb{E}[Y \mid T = t, W] \right] = \mathbb{E}_{W} \left[\mathbb{E}[\beta_{w}W + \beta_{u}U + \delta T \mid T = t, W] \right]$$
$$= \mathbb{E}_{W} \left[\beta_{w}W + \beta_{u}\mathbb{E}[U \mid T = t, W] + \delta t \right]$$

Assumed SCM:
$$\frac{T := \alpha_w W + \alpha_u U}{Y := \beta_w W + \beta_u U + \delta T}$$

$$\mathbb{E}_{W} \left[\mathbb{E}[Y \mid T = t, W] \right] = \mathbb{E}_{W} \left[\mathbb{E}[\beta_{w}W + \beta_{u}U + \delta T \mid T = t, W] \right]$$
$$= \mathbb{E}_{W} \left[\beta_{w}W + \beta_{u}\mathbb{E}[U \mid T = t, W] + \delta t \right]$$

Assumed SCM:
$$\frac{T := \alpha_w W + \alpha_u U}{Y := \beta_w W + \beta_u U + \delta T} \qquad U = \frac{T - \alpha_w W}{\alpha_u}$$

$$\mathbb{E}_{W} \left[\mathbb{E}[Y \mid T = t, W] \right] = \mathbb{E}_{W} \left[\mathbb{E}[\beta_{w}W + \beta_{u}U + \delta T \mid T = t, W] \right]$$
$$= \mathbb{E}_{W} \left[\beta_{w}W + \beta_{u}\mathbb{E}[U \mid T = t, W] + \delta t \right]$$

Assumed SCM:
$$\frac{T := \alpha_w W + \alpha_u U}{Y := \beta_w W + \beta_u U + \delta T} \qquad U = \frac{T - \alpha_w W}{\alpha_u}$$

$$\mathbb{E}_{W} \left[\mathbb{E}[Y \mid T = t, W] \right] = \mathbb{E}_{W} \left[\mathbb{E}[\beta_{w}W + \beta_{u}U + \delta T \mid T = t, W] \right]$$

$$= \mathbb{E}_{W} \left[\beta_{w}W + \beta_{u}\mathbb{E}[U \mid T = t, W] + \delta t \right]$$

$$= \mathbb{E}_{W} \left[\beta_{w}W + \beta_{u} \left(\frac{t - \alpha_{w}W}{\alpha_{u}} \right) + \delta t \right]$$

Assumed SCM:
$$T := \alpha_w W + \alpha_u U$$

$$Y := \beta_w W + \beta_u U + \delta T$$

$$U = \frac{T - \alpha_w W}{\alpha_u}$$

$$\mathbb{E}_{W} \left[\mathbb{E}[Y \mid T = t, W] \right] = \mathbb{E}_{W} \left[\mathbb{E}[\beta_{w}W + \beta_{u}U + \delta T \mid T = t, W] \right]$$

$$= \mathbb{E}_{W} \left[\beta_{w}W + \beta_{u}\mathbb{E}[U \mid T = t, W] + \delta t \right]$$

$$= \mathbb{E}_{W} \left[\beta_{w}W + \beta_{u} \left(\frac{t - \alpha_{w}W}{\alpha_{u}} \right) + \delta t \right]$$

$$= \mathbb{E}_{W} \left[\beta_{w}W + \frac{\beta_{u}}{\alpha_{u}}t - \frac{\beta_{u}\alpha_{w}}{\alpha_{u}}W + \delta t \right]$$

Assumed SCM:
$$T := \alpha_w W + \alpha_u U$$

$$Y := \beta_w W + \beta_u U + \delta T$$

$$U = \frac{T - \alpha_w W}{\alpha_u}$$

$$\mathbb{E}_{W} \left[\mathbb{E}[Y \mid T = t, W] \right] = \mathbb{E}_{W} \left[\mathbb{E}[\beta_{w}W + \beta_{u}U + \delta T \mid T = t, W] \right]$$

$$= \mathbb{E}_{W} \left[\beta_{w}W + \beta_{u}\mathbb{E}[U \mid T = t, W] + \delta t \right]$$

$$= \mathbb{E}_{W} \left[\beta_{w}W + \beta_{u} \left(\frac{t - \alpha_{w}W}{\alpha_{u}} \right) + \delta t \right]$$

$$= \mathbb{E}_{W} \left[\beta_{w}W + \frac{\beta_{u}}{\alpha_{u}}t - \frac{\beta_{u}\alpha_{w}}{\alpha_{u}}W + \delta t \right]$$

$$= \beta_{w}\mathbb{E}[W] + \frac{\beta_{u}}{\alpha_{u}}t - \frac{\beta_{u}\alpha_{w}}{\alpha_{u}}\mathbb{E}[W] + \delta t$$

Assumed SCM:
$$T := \alpha_w W + \alpha_u U$$

$$Y := \beta_w W + \beta_u U + \delta T$$

$$U = \frac{T - \alpha_w W}{\alpha_u}$$

$$\begin{split} \mathbb{E}_{W} \left[\mathbb{E}[Y \mid T = t, W] \right] &= \mathbb{E}_{W} \left[\mathbb{E}[\beta_{w}W + \beta_{u}U + \delta T \mid T = t, W] \right] \\ &= \mathbb{E}_{W} \left[\beta_{w}W + \beta_{u}\mathbb{E}[U \mid T = t, W] + \delta t \right] \\ &= \mathbb{E}_{W} \left[\beta_{w}W + \beta_{u} \left(\frac{t - \alpha_{w}W}{\alpha_{u}} \right) + \delta t \right] \\ &= \mathbb{E}_{W} \left[\beta_{w}W + \frac{\beta_{u}}{\alpha_{u}}t - \frac{\beta_{u}\alpha_{w}}{\alpha_{u}}W + \delta t \right] \\ &= \beta_{w}\mathbb{E}[W] + \frac{\beta_{u}}{\alpha_{u}}t - \frac{\beta_{u}\alpha_{w}}{\alpha_{u}}\mathbb{E}[W] + \delta t \\ &= \left(\delta + \frac{\beta_{u}}{\alpha_{u}} \right)t + \left(\beta_{w} - \frac{\beta_{u}\alpha_{w}}{\alpha_{u}} \right)\mathbb{E}[W] \end{split}$$

Step 1:
$$\mathbb{E}_W \left[\mathbb{E}[Y \mid T = t, W] \right] = \left(\delta + \frac{\beta_u}{\alpha_u} \right) t + \left(\beta_w - \frac{\beta_u \alpha_w}{\alpha_u} \right) \mathbb{E}[W]$$

Step 1:
$$\mathbb{E}_W \left[\mathbb{E}[Y \mid T = t, W] \right] = \left(\delta + \frac{\beta_u}{\alpha_u} \right) t + \left(\beta_w - \frac{\beta_u \alpha_w}{\alpha_u} \right) \mathbb{E}[W]$$

$$\mathbb{E}_{W} \left[\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W] \right]$$

Step 1:
$$\mathbb{E}_W \left[\mathbb{E}[Y \mid T = t, W] \right] = \left(\delta + \frac{\beta_u}{\alpha_u} \right) t + \left(\beta_w - \frac{\beta_u \alpha_w}{\alpha_u} \right) \mathbb{E}[W]$$

$$\mathbb{E}_{W} \left[\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W] \right] = \left(\delta + \frac{\beta_{u}}{\alpha_{u}} \right) (1) + \left(\beta_{w} - \frac{\beta_{u} \alpha_{w}}{\alpha_{u}} \right) \mathbb{E}[W]$$

$$- \left[\left(\delta + \frac{\beta_{u}}{\alpha_{u}} \right) (0) + \left(\beta_{w} - \frac{\beta_{u} \alpha_{w}}{\alpha_{u}} \right) \mathbb{E}[W] \right]$$

Brady Neal

Step 1:
$$\mathbb{E}_W \left[\mathbb{E}[Y \mid T = t, W] \right] = \left(\delta + \frac{\beta_u}{\alpha_u} \right) t + \left(\beta_w - \frac{\beta_u \alpha_w}{\alpha_u} \right) \mathbb{E}[W]$$

$$\mathbb{E}_{W} \left[\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W] \right] = \left(\delta + \frac{\beta_{u}}{\alpha_{u}} \right) (1) + \left(\beta_{w} - \frac{\beta_{u} \alpha_{w}}{\alpha_{u}} \right) \mathbb{E}[W]$$

$$- \left[\left(\delta + \frac{\beta_{u}}{\alpha_{u}} \right) (0) + \left(\beta_{w} - \frac{\beta_{u} \alpha_{w}}{\alpha_{u}} \right) \mathbb{E}[W] \right]$$

$$= \delta + \frac{\beta_{u}}{\alpha_{u}}$$

Bias =
$$\mathbb{E}_{W} [\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W]]$$

- $\mathbb{E}_{W,U} [\mathbb{E}[Y \mid T = 1, W, U] - \mathbb{E}[Y \mid T = 0, W, U]]$

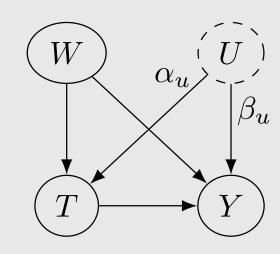
$$\begin{aligned} \operatorname{Bias} &= \mathbb{E}_{W} \left[\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W] \right] \\ &- \mathbb{E}_{W,U} \left[\mathbb{E}[Y \mid T = 1, W, U] - \mathbb{E}[Y \mid T = 0, W, U] \right] \\ &= \delta + \frac{\beta_{u}}{\alpha_{u}} - \delta \end{aligned}$$

Bias =
$$\mathbb{E}_{W} [\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W]]$$

 $- \mathbb{E}_{W,U} [\mathbb{E}[Y \mid T = 1, W, U] - \mathbb{E}[Y \mid T = 0, W, U]]$
 $= \delta + \frac{\beta_{u}}{\alpha_{u}} - \delta$
 $= \frac{\beta_{u}}{\alpha_{u}}$

Bias =
$$\mathbb{E}_{W} [\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W]]$$

 $- \mathbb{E}_{W,U} [\mathbb{E}[Y \mid T = 1, W, U] - \mathbb{E}[Y \mid T = 0, W, U]]$
 $= \delta + \frac{\beta_{u}}{\alpha_{u}} - \delta$
 $= \frac{\beta_{u}}{\alpha_{u}}$

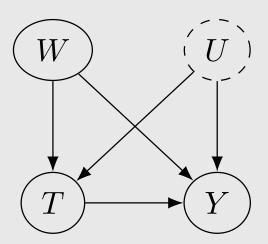


$$T := \alpha_w W + \alpha_u U$$

$$Y := \beta_w W + \beta_u U + \delta T$$

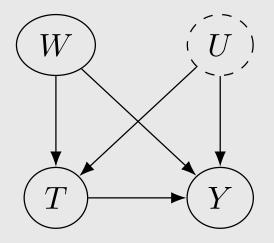
Generalization to Arbitrary Linear SCMs

We've considered specifically the ATE in this simple graph $\mathbb{E}[Y(1)-Y(0)]$



Generalization to Arbitrary Linear SCMs

We've considered specifically the ATE in this simple graph $\mathbb{E}[Y(1)-Y(0)]$



See "Sensitivity Analysis of Linear Structural Causal Models" from Cinelli et al. (2019) for arbitrary estimands in arbitrary graphs, where the structural equations are still linear

SCM:
$$T := \alpha_w W + \alpha_u U$$
$$Y := \beta_w W + \beta_u U + \delta T$$

Questions:

- 1. Given the above SCM, show that $\mathbb{E}_{W,U}\left[\mathbb{E}[Y\mid T=1,W,U]-\mathbb{E}[Y\mid T=0,W,U]\right]=\delta$
- 2. Does what we have shown in this section work if W is a vector?
- 3. How about if U is a vector?

Bounds

No-Assumptions Bound

Monotone Treatment Response

Monotone Treatment Selection

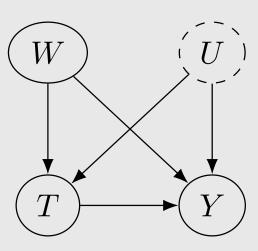
Optimal Treatment Selection

Sensitivity Analysis

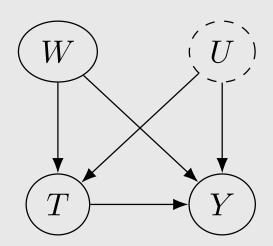
Linear Single Confounder

Towards More General Settings

$$T := \alpha_w W + \alpha_u U$$
$$Y := \beta_w W + \beta_u U + \delta T$$



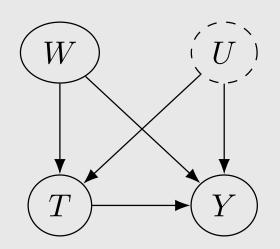
$$T := \alpha_w W + \alpha_u U$$
$$Y := \beta_w W + \beta_u U + \delta T$$



$$P(T = 1 \mid W, U) := \text{sigmoid} (\alpha_w W + \alpha_u U)$$

$$Y := \beta_w W + \beta_u U + \delta T + N$$
where $\text{sigmoid}(x) = \frac{1}{1 + e^{-x}}$

$$T := \alpha_w W + \alpha_u U$$
$$Y := \beta_w W + \beta_u U + \delta T$$



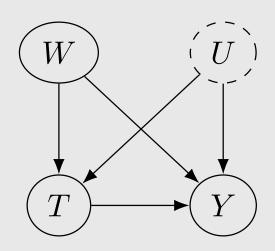
$$P(T = 1 \mid W, U) := \text{sigmoid} (\alpha_w W + \alpha_u U)$$

$$Y := \beta_w W + \beta_u U + \delta T + N$$
where sigmoid(x) = $\frac{1}{1 + e^{-x}}$

Rosenbaum & Rubin (1983) and Imbens (2003)

• Simple parametric form for T

$$T := \alpha_w W + \alpha_u U$$
$$Y := \beta_w W + \beta_u U + \delta T$$

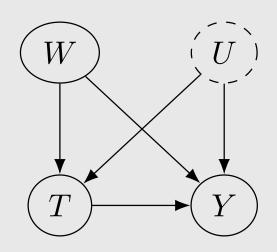


$$P(T = 1 \mid W, U) := \text{sigmoid} (\alpha_w W + \alpha_u U)$$

$$Y := \beta_w W + \beta_u U + \delta T + N$$
where $\text{sigmoid}(x) = \frac{1}{1 + e^{-x}}$

- Simple parametric form for T
- Simple parametric form for Y

$$T := \alpha_w W + \alpha_u U$$
$$Y := \beta_w W + \beta_u U + \delta T$$

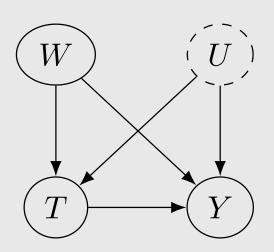


$$P(T = 1 \mid W, U) := \text{sigmoid} (\alpha_w W + \alpha_u U)$$

$$Y := \beta_w W + \beta_u U + \delta T + N$$
where $\text{sigmoid}(x) = \frac{1}{1 + e^{-x}}$

- Simple parametric form for T
- Simple parametric form for Y
- U is binary

$$T := \alpha_w W + \alpha_u U$$
$$Y := \beta_w W + \beta_u U + \delta T$$

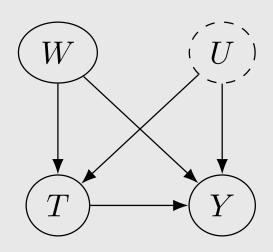


$$P(T = 1 \mid W, U) := \text{sigmoid} (\alpha_w W + \alpha_u U)$$

$$Y := \beta_w W + \beta_u U + \delta T + N$$
where $\text{sigmoid}(x) = \frac{1}{1 + e^{-x}}$

- Simple parametric form for T
- Simple parametric form for Y
- U is binary
- U is a scalar (only one unobserved confounder)

$$T := \alpha_w W + \alpha_u U$$
$$Y := \beta_w W + \beta_u U + \delta T$$



$$P(T = 1 \mid W, U) := \text{sigmoid} (\alpha_w W + \alpha_u U)$$

$$Y := \beta_w W + \beta_u U + \delta T + N$$
where $\text{sigmoid}(x) = \frac{1}{1 + e^{-x}}$

Cinelli & Hazlett (2020) drop many of these assumptions

- Simple parametric form for T
- Simple parametric form for Y
- U is binary
- U is a scalar (only one unobserved confounder)

• Assumes no parametric form for structural equation for T

- Assumes no parametric form for structural equation for T
- Allows for multiple confounders (U can be a vector)

- Assumes no parametric form for structural equation for T
- Allows for multiple confounders (U can be a vector)
- No assumed distribution on U

- Assumes no parametric form for structural equation for T
- Allows for multiple confounders (U can be a vector)
- No assumed distribution on U
- Gives rigorous bound to tells us when we can know that our causal effect estimate is sufficiently robust to unobserved confounding

- Assumes no parametric form for structural equation for T
- Allows for multiple confounders (U can be a vector)
- No assumed distribution on U
- Gives rigorous bound to tells us when we can know that our causal effect estimate is sufficiently robust to unobserved confounding

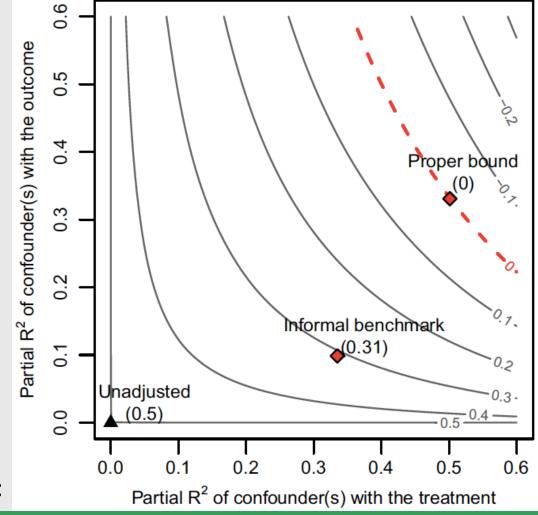


Figure 4:

- Assumes no parametric form for structural equation for T
- Allows for multiple confounders (U can be a vector)
- No assumed distribution on U
- Gives rigorous bound to tells us when we can know that our causal effect estimate is sufficiently robust to and follow-ups unobserved confounding

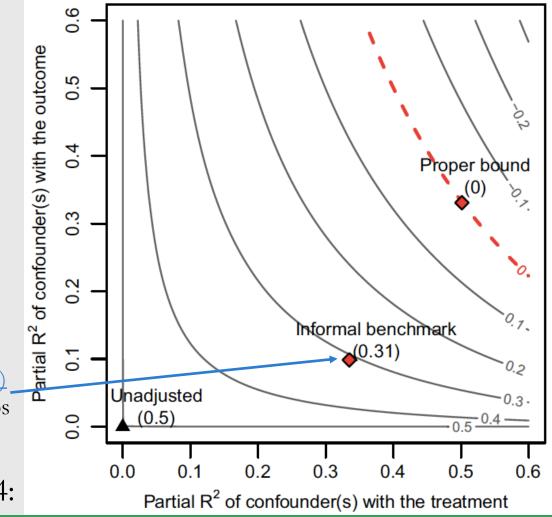


Figure 4:

Sense and Sensitivity Analysis Veitch & Zaveri (2020)

Sense and Sensitivity Analysis Veitch & Zaveri (2020)

Gives the same nice sensitivity curves we've been seeing, but with more flexible parameterization

Sense and Sensitivity Analysis Veitch & Zaveri (2020)

Gives the same nice sensitivity curves we've been seeing, but with more flexible parameterization

Both the treatment mechanism and the outcome mechanism can be modeled with **arbitrary machine learning models**, and we still get a closed-form expression for the bias (assuming well-specification)

Lots of Other Sensitivity Analysis Methods

- An Introduction to Sensitivity Analysis for Unobserved Confounding in Non-Experimental Prevention Research (Liu, Kuramoto, & Stuart., 2013)
- Rosenbaum has several (Rosenbaum 2002, 2010, 2017)
- Unmeasured Confounding for General Outcomes, Treatments, and Confounders (VanderWeele & Arah, 2011)
- Sensitivity Analysis Without Assumptions (Ding & VanderWeele, 2018)
- Flexible sensitivity analysis for observational studies without observable implications (Franks, D'Amour, & Feller, 2019)
- Bounds on the conditional and average treatment effect with unobserved confounding factors (Yadlowsky et al., 2018)